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Executive Summary 
This analysis report presents the methods, data, and results of calculations done in support of 
Culebra head and hydraulic gradient monitoring network design and optimization. The three 
metrics used include: 

1. freshwater head kriging variance reduction, 
2. triangle geometry shape quality maximization, and 
3. identification of areas where there is a high statistical correlation between model

predicted travel times and either 
a. model input effective hydraulic conductivity (Keff) or 
b. heads (h) · 

These three different and largely independent approaches to monitoring network design are 
discussed individually in detail (Sections 2, 3 and 4) and are combined (Section 5) for two 
different types of results, 

1. ranking of possible locations for new wells, and 
2. ranking the importance of maintaining existing locations. 

The combinations of the three metrics for the suitability of a location for a new monitoring 
location are shown in the following two figures (discussed more fully in the Section 5). 

h + median 

2.0 

1.5 

1.0 

0.5 

0.0 

-0.5 

-1.0 

-1.5 

-2 .0 

tr," 

In these two figures, red and orange areas are poor locations for a new well, while dark blue and 
purple areas are good locations for a new well. The left figure includes metrics 1, 2, and 3a 
(from the top bulleted list), while the right fiure includes metrics 1, 2, and 3b. While the two 
figures are different in some details, they both show that the areas between monitoring locations 
that are distant from the WIPP L WB (interior black square) rank highly overall (dark blue). 
Areas roughly consisting of' spokes" radiating away from the WIPP L WB - between closely 
spaced monitoring wells- rank poorly overall (yellow and orange). 
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Using the same three metrics for ranking the existing steel-cased wells (assuming fiberglass
cased wells will have a long life), the results are combined in the following figure (discussed 
more fully in Section 5). 
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In this figure, the size of the different symbols is related to the relative importance of each of the 
steel-cased wells, ranked via the three metrics. Many wells are important to one or two metrics 
and unimportant to another (e.g., closely-spaced wells inside the WIPP L WB perform poorly in 
the kriging variance reduction, but might be in important areas for the model input/output 
correlation). Overall, wells H-12, H-10c, and AEC-7 have relatively high ranks in all three 
metrics. These wells are somewhat isolated and therefore are individually important in their 
contributions to the success of the overall monitoring network. 
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1.0 Introduction 

This analysis report presents the methods, data, and results of calculations done in support of 
Culebra head and hydraulic gradient monitoring network design and optimization. Three 
different and largely independent approaches to monitoring network design are examined. These 
approaches include optimal locations for additional monitoring wells and identification of wells 
in the current monitoring network that could be removed with minimal effect on meeting the 
monitoring objectives. The three different sets of results are then combined into a final set of 
maps indicating potential areas for the installation of new monitoring wells. Additionally, 
several wells in the existing network could be removed with minimal effect on the ability of the 
monitoring network to predict heads at unmonitored locations and to detect changes in the 
hydraulic gradient. The three approaches used here are similar to approaches used in the 2004 
ground water monitoring network design calculations, and this allows for direct comparison of 
some results with those obtained five years ago. 

1. 1. Background 

The Waste Isolation Pilot Plant (WIPP) is located in southeastern New Mexico and has been 
developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) 
disposal oftransuranic (TRU) waste. Containment ofTRU waste at the WIPP is regulated by the 
U.S. Environmental Protection Agency (EPA) according to the regulations set forth at Title 40 of 
the Code ofFederal Regulations, Parts 191 and 194. The DOE demonstrates compliance with 
the containment requirements in the regulations by means of a performance assessment (PA), 
which estimates releases from the repository for the regulatory period of 10,000 years after 
closure. 

Groundwater monitoring and modeling activities at the WIPP are an integral part ofthe DOE's 
broader requirements to demonstrate that WIPP operations are performed in a manner that 
ensures protection of the environment, the health and safety of workers and the public, proper 
characterization of the disposal system, and compliance of the WIPP with applicable regulations. 
Continued compliance with regulations must be demonstrated every five years during the 
operational phase of the WIPP. The monitoring requirements apply not only for the current 
operational phase (~35 years), but extend through the post-closure phase of the facility to meet 
applicable regulations. Because of these long-term requirements, DOE's Carlsbad Field Office 
(CBFO) has developed the WIPP Groundwater Protection Program Plan (DOE, 2009) that 
describes: relevant regulatory (EPA and New Mexico Environment Department) drivers; the 
current groundwater-monitoring network and how it has evolved over time; current groundwater 
program elements; strategies for maintaining compliance; methods for implementing the 
strategies; and roles and responsibilities of monitoring program participants. 

This analysis report is a revision of McKenna (2004), which identified wells that could be 
removed from the existing network as well as looked at potential locations to expand the 
monitoring network. Since 2004, the number of monitoring wells available for analysis have 
increased by 40%, from 30 to 42. Now after the SNL-series fiberglass-cased wells have been 
constructed, this report is re-evaluating the well network based on the new information obtained 
from these new wells and the updated Culebra P A flow model, completed for the compliance 
recertification application (CRA) 2009 performance assessment baseline calculation (PABC). 
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1. 2. Purpose 

The purpose of these calculations is primarily to determine which of the remaining steel-cased 
wells can be plugged and abandoned (P&Aed) without degrading the monitoring network. A 
secondary goal is to identify optimal locations for any new Culebra monitoring wells. The 
calculations herein will be focused on meeting the goals of: 

1. The monitoring network must allow the determination of the direction and rate of 
groundwater flow across the WIPP site. This is both an NMED and an EPA requirement 
(NMAC, 2000 incorporating 40 CFR Part 194 §264.98(e) (U.S. EPA, 1996)); 

2. The monitoring network must provide data needed to infer causes of changes in water levels 
that might be observed. This is an EPA requirement, 40 CFR Part 194, Subpart C 
§194.42 (U.S. EPA, 1996); and 

3. The monitoring network must provide spatially distributed head data adequate to allow both 
defensible boundary conditions to be inferred for Culebra flow models and defensible 
calibration of those models (P A requirements). 

The degree to which these objectives can be reduced to quantitative measures is evaluated as part 
of the work reported in this analysis report. 

The minimized and optimized monitoring network will be created using available information 
including existing wells and up to date understanding of the hydrology of the Culebra. The 
optimization and minimization process takes the following factors into consideration: 

1. Existing locations of fiberglass-cased wells 
2. Existing well locations that are not needed 
3. Culebra hydraulic property variations and geologic boundaries 

1. 3. Outline 

This report documents the data, methods, and summary results of the work completed under 
Analysis Plan 111 (Kuhlman, 2008). The analysis has four main components, which look at the 
network optimization from the perspective of: 

1. kriging: considers the spatial clustering of observation points and the geostatistical 
structure of the data via the variogram (see Section 2.0); 

2. local gradient estimators: Delaunay triangles that consider the geometric quality of the 
well network and the observed gradient across the well network (see Section 3.0); 

3. flow model correlation: uses the structure embodied in the calibrated flow model 
regarding formation heterogeneity and geologic processes (see Section 4.0); 

4. combining the results of the three above methods into one result (see Section 5.0) 

1.4. Calculation domain 
The spatial domain used for the different calculations in support of monitoring network design is 
the same as the model domain used in the two-dimensional (2D) Culebra groundwater flow 
model (Hart et al., 2008; 2009). This model domain is aligned with the Universal Transverse 
Mercator (UTM) coordinate system and is 30.7 krn long by 28.4 krn wide (872 krn2 total, 587 
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km2 active). The comers of the Culebra numerical groundwater model domain are listed in 
Table 1-1. Relative to the CRA 2004 calculations, the eastern extent of the model domain has 
moved from 624000 m to 630000 m UTM 1927 North American datum (NAD27) meters, as 
explained in (Hart et al., (2008), §2.1 ). These coordinates define the center of 100 m x 100 m 
model cells at the four comers of the model domain. All monitoring calculations that produce 
results on a spatial grid employ the same grid as used for the 2D Culebra flow model (see e.g., 
Kuhlman, 201 Ob ), unless otherwise noted. 

Table 1-1. Culebra flow model domain UTM NAD27 Zone 13 coordinates 

Model domain corner X[m[ Y[m] 
Northeast 630000 3597100 
Northwest 601700 3597100 
Southeast 630000 3566500 
Southwest 601700 3566500 

The WIPP land-withdrawal boundary (L WB) encloses 16 township and range sections 
(approximately 41 km2

) near the center of the MODFLOW model domain. The boundary of the 
WIPP site is defined by the comers of the 16 sections, which have the UTM coordinates given in 
Table 1-2. For the calculations described in this report, the coordinates given in Table 1-1 and 
Table 1-2 are used to delineate areas, across which we average different measures of 
effectiveness for the monitoring network. 

Table 1-2. The WIPP LWB UTM NAD27 Zone 13 coordinates 

WIPP boundar~ corner X[m] Y[m] 
Northeast 616941 3585109 
Northwest 610495 3585068 
Southeast 617015 3578681 
Southwest 610567 3578623 

1. 5. Observed Data 

The approaches developed in this report can be applied to any set of nearly-simultaneous 
undisturbed head measurements (i.e., a "snapshot" in time of the hydraulic head in the Culebra). 
The wells used here are shown in Figure 1-1 and the data observed at these wells are listed in 
Table 1-3 (freshwater head data from (Johnson, 2009)). The majority of the calculated 
freshwater head values correspond to those used in the calibration of the CRA-2009 PABC 
transmissivity fields (Hart et al., 2009) with four exceptions and one note: 

1. A representative 2004 value from AEC-7 was used (this well was left out ofthe flow 
model calibration due to known configuration problems in 2007). Freshwater heads at 
AEC-7 have been very stable historically (1988 through 2004), and are now 
representative of previous trends after well reconfiguration. Over 15 years (12/1988 
through 3/2004) there were 172 head measurements with a standard deviation of only 
0.56m; 

2. Freshwater heads from March 2007 were used at the H-19 wellpad, to include the six 
redundant wells (H-19b{2,3,4,5,6,7}), which are only monitored quarterly. These wells 
are only included in the variogram modeling, to better constrain head variation at short 
distance scales (see discussion about optimal well networks for estimating variograms in 
Warrick & Myers (1984) or Conwell, et al. (1997)). The central H-19b0 well is used as 
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the sole H-19b well in the rest ofthe analyses discussed in this report. The coordinates of 
the H-19b wells reflect their computed UTM x, y locations at the Culebra (229 m below 
ground surface (bgs)), accounting for observed deviations from vertical completion 
(Meigs et al., 2000). H-19b0 freshwater heads are within 2 em between the March and 
May 2007 observation times. 

3. SNL-6 and SNL-15 have not recovered since being drilled in 2005, and will likely take 
hundreds of years to recover to "static" conditions. These wells use land-surface 
elevations in place of water levels in the model calibration (> 1000 m above mean sea 
level (AMSL)); they are not used in situations where a representative head value is 
needed (e.g., variogram modeling and gradient estimation), but their locations are 
included otherwise (e.g., kriging and network geometry optimization). 

4. WIPP-30 is not included in the network optimization, since this well was plugged and 
abandoned in May 2007. 

5. WIPP-25 is used both here and in the CRA-2009 PABC Culebra flow modeling exercise, 
although this well was P&Aed in 2009. 

In addition to the calculated May 2007 freshwater heads, calibration results from the most recent 
iteration of the Culebra PAT-fields (Hart et al., 2009) are also used. These results include the 
simulated head values, calibrated transmissivity and anisotropy values, and particle travel times 
from C-2737 to the WIPP LWB for each ofthe 100 modelrealizations. These results are used in 
the third sensitivity-based approach. 
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Figure 1-1. Locations of monitoring wells used in this study 
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Table 1-3. Freshwater Heads from May 2007 used in analysis (Johnson, 2009) 

UTMNAD27x UTMNAD27y 
Freshwater 

Well Head 
Zone 13(m] Zone 13 (m] 

[mAMSL) 
I AEC-7<1l 621126 3589381 933.03 
2 C-2737 613598.0 3581400.9 921.23 
3 ERDA-9 613696.1 3581944.3 924.88 
4 H-2b2 612662.5 3581639.7 929.62 
5 H-3b2 613693.6 3580899.6 918.68 
6 H-4b 612376.0 3578478.5 916.34 
7 H-5b 616866.0 3584807.0 939.12 
8 H-6b 610598.6 3584986.9 936.44 
9 H-7bl 608122.8 3574646.4 914.58 
10 H-9c 613971.1 3568237.2 912.80 
II H-IOc 622976.3 3572444.3 922.02 
12 H-llb4 615297.3 3579123.5 917.09 
13 H-12 617022.0 3575460.5 916.53 
14 H-15 615310.0 3581855.2 920.32 
15 H-17 615717.0 3577507.8 916.24 
16 H-19b0(2l 614515.2 3580718.9 918.82 
17 H-19bi2l 614516.2 3580693.8 918.64 
18 H-19b3<2l 614526.1 3580719.6 918.57 
19 H-19b4(2l 614494.6 3580727.6 918.77 
20 H-19b5<2l 614502.3 3580713.6 918.60 
21 H-19b6<2l 614518.0 3580738.5 918.58 
22 H-19b7<2l 614516.0 3580706.7 918.54 
23 IMC-461 606182.6 3582246.4 928.95 
24 SNL-1 613781.4 3594299.0 941.86 
25 SNL-2 609113.1 3586529.1 937.65 
26 SNL-3 616103.0 3589046.9 939.81 
27 SNL-5 611970.2 3587284.7 938.59 
28 SNL-6(3l 621244.6 3595390.0 856.00 
29 SNL-8 618522.8 3583783.3 929.94 
30 SNL-9 608704.8 3582237.7 932.05 
31 SNL-10 611229.3 3581764.8 931.54 
32 SNL-12 613223.4 3572727.4 915.24 
33 SNL-13 610394.3 3577599.8 918.19 
34 SNL-14 614989.7 3577652.0 916.33 
35 SNL-15(3) 618353.2 3580336.4 865.65 
36 SNL-16 605191.8 3578999.7 918.68 
37 SNL-17 609863.2 3576016.1 916.78 
38 SNL-18 613605.8 3591528.6 939.87 
39 SNL-19 607813.5 3588947.4 937.58 
49 USGS-4 605841.0 3569887.0 911.11 
41 WIPP-11 613788.2 3586474.0 940.65 
42 WIPP-13 612645.0 3584241.7 939.78 
43 WIPP-19 613738.8 3582773.5 933.66 
44 WIPP-25 606385.7 3584022.8 937.57 
45 WQSP-1 612559.4 3583430.3 938.28 
46 WQSP-2 613770.4 3583972.2 939.87 
47 WQSP-3 614685.5 3583506.8 936.43 
48 WQSP-4 614724.5 3580762.8 919.50 
49 WQSP-5 613666.5 3580353.6 918.18 
50 WQSP-6 612602.3 3580737.9 921.96 

1. representative water level from 2004 
2. H-19 wells from March 2007 
3. not used in variogram estimation 
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1. 6. Run Control 
Nearly all the calculations done for this analysis report were completed on a Dell Precision 690 
workstation, equipped with two quad-core 2.66-GHz Intel Xeon chips (X5355). The work was 
done on this system running the Microsoft Windows XP (service pack 2) operating system. Two 
of the scripts were run on the PA Pentium 4 Linux cluster (alice. sandia. gov); these scripts 
checked the Culebra MODFLOW model results out of CVS (only accessible from Linux) and 
performed the binary-to-ASCII conversion on the model-produced heads before creating a zip 
archive of the files for transfer to Windows. The input files, scripts, and outputs are contained 
within the analysis directory on the CD-ROM associated with this analysis report; the 
contents of the CD are listed in Section 8 .1. 

Each section has a run control subsection describing the software and scripts that were used to 
perform the analysis in that section. All scripts created for this analysis report are listed in 
Section 8.0 with syntax highlighting and line numbers. Table 1-4 lists the software used 
throughout this report, all software is either commercial offthe shelf (COTS), or it is qualified 
for use with WIPP P A. 

Table 1-4. Summary of software used 

Software 
Golden Software Surfer 
Microsoft Office Excel 
R 
Enthought Python (EPD) 
GSLIB program KT3D 
The Mathworks MATLAB 
Gnu Bash 
Windows XP cmd. exe 

Version 
9.9 
2007 (SPI) 
2.10 
6.1 
2.0 (1996) 
R2009b 
3.00.15 
5.1.2600 

Type 
COTS 
COTS 
COTS 
COTS 
Qualified 
COTS 
COTS 
COTS 

Use 
Map plotting I Variograms 
Plotting I Regression 
Statistical Script Interpreter 
Script Interpreter I Plotting 
Kriging 
Script Interpreter I Plotting 
Script Interpreter (Linux) 
Script Interpreter (Windows) 

Scripts for Python, R, Bash, and MATLAB are ASCII and are listed in Section 8.0, while Surfer 
and Excel input files are binary and therefore are included on the CD (see listing of contents of 
CD in Section 8.1 ). 

1. 7. Notation 

Throughout this analysis report the following conventions are used: 

1. file names and directory paths are listed in the Courier New monospaced font; 
2. source code excerpts are listed in the Lucida console monospaced font; 
3. program functions and classes are listed as code excerpts with trailing parentheses for 

clarity; 
4. units are given in metric, specified in square brackets (unless used as an adjective); 
5. scalar variables are in italic font; and 
6. vector variables are in bold font. 
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2.0 Geostatistical Variance Reduction 

Geostatistics is the modeling and prediction of spatially-correlated information and it has been 
used extensively over the past 30 years in areas including ore reserve estimation, contaminant 
mapping in soils and groundwater, and modeling spatial variability of physical properties of 
aquifers and petroleum reservoirs. Kriging is the geostatistical algorithm used for spatial 
estimation; compared to other spatial interpolation algorithms (e.g., inverse distance or linear 
interpolation), kriging uniquely estimates both a value and its variance at unsampled locations. 

Previous studies (Rouhani, 1985) have used kriging variance as a measure of the ability of a 
groundwater monitoring network to predict hydraulic heads at locations where no wells exist. 
Groundwater monitoring network design can be optimized to either minimize average kriging 
variance across the domain or to minimize the maximum predicted kriging variance. The 
estimation variance can also be used as a metric to justify removing wells from an existing 
network such that the overall kriging variance has a minimal increase. As an example, 
(Tuckfield et al., 2001) used the kriging variance of contaminants in a plume to determine the 
redundancy of groundwater contaminant monitoring wells and targeted those wells with the 
highest redundancy for removal from the network. 

Kriging variance is a direct function of the spatial distribution of observations and the variogram 
(which is fitted to observed data). Kriging variance is only indirectly a function ofthe observed 
values; this is a major advantage of using kriging in monitoring network optimization. 
Therefore, changes in the kriging variance from the addition or removal of a well can be 
estimated prior to adding or removing that well with a standard kriging calculation. 

The geostatistical analysis presented here utilizes ordinary kriging of the residual freshwater 
heads, after removing a linear trend. The freshwater heads in the Culebra across the model 
domain have a clear trend (i.e., the regional north-south gradient, see Figure 2-1 ). Although it is 
possible to krige values while simultaneously estimating a trend (i.e., universal kriging), this 
approach is not used here. Universal kriging does obviate the need to first estimate the linear 
trend for the kriging, but model-fitting to the observed variogram is made more complex, 
requiring a non-linear optimization or iterative refinement between variogram fitting and kriging 
with a trend (Armstrong, 1984; Goovaerts, 1998). 
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Figure 2-l.Projection of freshwater heads (circles), piecewise linear trend (blue dashed line), and best-fit 
linear trend (red line) onto y-head plane at x-midpoint of MODFLOW model domain. 

2. 1. Trend Fitting and Residual Calculations 

The residuals associated with the head observations from May 2007 are used for the 
geostatistical variance reduction analysis. A best-fit linear surface through these heads was 
calculated using the COTS statistical software R. The equation for the best-fit plane through 
May 2007 freshwater heads is 

h(x,y)=Ax+By+C. (1) 

The results of fitting this equation to the data in Table 1-3 areA= -9.0x10-5
, B = 1.5x10-3 and 

C = -4.6x103 m (see Table 2-1 for more significant digits and fit statistics). They component (B) 
of the gradient is approximately an order of magnitude larger than the x component (A). Both B 
and C have t statistic values indicating significance (ltl> 2), but A does not (see Table 2-1 ); the 
east-west component of the regional gradient cannot be estimated accurately from the given data. 
This same linear fit resulted in coefficients of A= 1.98x10-4

, B = 1.62x10-3 and C = -5007.74 in 
the 2004 version of this analysis. They-component of the gradient (B) has not changed much, 
but the x-component (A) and the additive constant (C) have changed. Overall, the resulting 
gradient vectors are quite similar (see Figure 2-2), considering the large number of wells that 
have changed between the two studies. 
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Figure 2-2. Comparison of gradient vectors corresponding to best-fit planes through 2003 (black) and 2007 
(red) data. Red dotted lines correspond to estimated gradient± gradient standard error. 

Figure 2-3 illustrates several plots related to the fit of Equation (1) to freshwater heads. The 
upper-left plot shows the residual (measured- trend) as a function ofthe trend. The outliers 
from the moving-average residual trend are H-10c, WQSP-2 and WIPP-13 (see red line and 
labeled points in the upper left plot in Figure 2-3). The upper-right normal quantile plot (Q-Q) 
shows that aside from the extreme values, the residuals are ordered approximately normally 
(plotting quantiles, rather than values makes this plot non-parametric). The lower-left scale
location plot shows magnitude of residuals against the trend value, illustrating that the steep 
gradient across the WIPP site (920-935 m elevation) is where residuals are largest on average. 
The lower-right leverage plot shows the relative effects that removing a well has on the predicted 
surface, plotted against residuals. The wells with the most leverage and the largest residuals are 
wells at the extremities ofthe domain, including H-10c, H-9c and AEC-7. 
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Table 2-1. Fit statistics for linear surface (Equation 1) through freshwater head data (Table 1-3) 

0 

0 
0 

0 

0 

(Intercept) x y 
-4.563833e+03 -9.023153e-05 1.548563e-03 

Residuals: 
Min 1Q Median 

-7.361 -4.833 -0.459 

Coefficients: 

(Intercept) 
X 
y 

Estimate 
-4.564e+03 
-9.023e-05 
1.549e-03 

3Q Max 
3.901 9.911 

Std. Error 
5.594e+02 
2.231e-04 
1. 537e-04 

t value 
-8.158 
-0.405 
10.077 

Pr(>ltl) 
5.83e-10 

0.688 
2.06e-12 

*** 

*** 

signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 5.392 on 39 degrees of freedom 
Multiple R-squared: 0.7226, Adjusted R-squared: 0.7083 
F-statistic: 50.79 on 2 and 39 DF, p-value: 1.386e-11 
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Figure 2-3. Statistics of linear surface (Equation 1) fit to May 2007 freshwater heads 

0! 

With these parameter values, Equation 1 fits the May 2007 heads with R2=0.7083 (see 
penultimate row of Table 2-1). This best-fit plane has a hydraulic gradient of 1.55x10-3 and a 
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flow direction 3 degrees east of south, but the exact angle is poorly defined. The residuals 
between the estimated and measured heads are used as the input data for the geostatistical 
analysis. In the 2004 version ofthis analysis, R2=0.6, the gradient magnitude and angle were 
computed to be 1.64x 1 o-3 and 7 degrees east of south (see Figure 2-2 for comparison). 
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Figure 2-4. Effects of removing a steel-cased well on parameters related to the estimated linear trend. 

Adding or removing a single data point from the dataset (Table 2-2) has two potential effects on 
the results of kriging. First, the best-fit trend surface can change (see "residuals vs. leverage" 
plot in Figure 2-3 and Figure 2-4), especially if the point being added or removed is at the 
extremities ofthe domain (e.g., wells AEC-7, H-9c, and H-10c). Second, the experimental 
variogram computed from the residuals can change (see next section). 

Figure 2-4 shows the results of removing each steel-cased well individually, and fitting Equation 
(1) using least-squares to the resulting smaller dataset. As was shown in the "residuals vs. 
leverage" plot in Figure 2-3, H-10c, H-9c, and AEC-7 have a large effect on the R2 measure of 
the fit quality. The blue and green bars in Figure 2-4 illustrate the change on the magnitude and 
angle of the gradient due to removing a single steel-cased well. H-9c has a large effect on the 
magnitude but not the angle of the gradient; it is located in the south-central portion of the 
domain. In contrast, WIPP-25 and AEC-7 have larger effects on the angle than the magnitude of 
the gradient; these wells are on the east and west extremities of the MODFLOW domain, 
respectively. 
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Table 2-2. May 2007 freshwater head (FWH) data and residual. The residuals in the right column are 
calculated as measured- modeled head, sorted by residual magnitude. 

Well 
Observed Residual 
FWH[m] [m] 

1 H-3b2 918.68 -7.36 
2 H-19b6 918.58 -7.14 
3 H-19b7 918.54 -7.13 
4 H-19b3 918.57 -7.12 
5 H-19b5 918.6 -7.08 
6 H-15 920.32 -7.05 
7 WQSP-5 918.18 -7.02 
8 H-19b2 918.64 -7.01 
9 H-19b4 918.77 -6.93 
10 H-19b0 918.82 -6.87 
11 WQSP-4 919.5 -6.24 
12 H-4b 916.34 -6.07 
13 H-11b4 917.09 -6.06 
14 C-2737 921.23 -5.60 
15 AEC-7 933.03 -5.47 
16 SNL-16 918.68 -5.19 
17 SNL-1 941.86 -4.92 
18 SNL-14 916.33 -4.56 
19 H-17 916.24 -4.37 
20 WQSP-6 921.96 -3.93 
21 SNL-13 918.19 -3.04 
22 ERDA-9 924.88 -2.78 
23 SNL-18 939.87 -2.64 
24 H-7b1 914.58 -2.28 
25 SNL-17 916.78 -2.04 
26 SNL-19 937.58 -1.45 
27 H-12 916.53 -0.79 
28 SNL-8 929.94 -0.13 
29 IMC-461 928.95 0.15 
30 SNL-3 939.81 1.37 
31 USGS-4 911.11 1.41 
32 SNL-12 915.24 1.81 
33 H-2b2 929.62 2.34 
34 SNL-2 937.65 2.48 
35 SNL-5 938.59 2.51 
36 SNL-9 932.05 3.49 
37 H-6b 936.44 3.79 
38 SNL-10 931.54 3.94 
39 WIPP-19 933.66 4.72 
40 WIPP-11 940.65 5.99 
41 WIPP-25 937.57 6.03 
42 H-9c 912.8 6.39 
43 WQSP-3 936.43 6.44 
44 H-5b 939.12 7.31 
45 WQSP-1 938.28 8.22 
46 WIPP-13 939.78 8.47 
47 WQSP-2 939.87 9.08 
48 H-10c 922.02 9.91 

2.2. Variogram Estimation and Modeling 

The experimental variogram is calculated and modeled using Surfer. Introductions to variogram 
modeling and geostatistics in general are found in many places in the geostatistics literature; e.g., 
(Isaaks and Srivastava, 1989; American Society of Civil Engineers, 1990; Kitanidis, 1997). The 
experimental variogram is calculated in Surfer as 
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1\ 1 N(h) 

y(h) = ~)z(u;)- z(u; + h)]2
, 

2N(h) i=I 

(2) 

where his the lag spacing vector [m] (most generally his a vector, but later it will assumed to be 
a scalar distance), z( u;) are the residual freshwater head values at u;, u; is a vector of spatial 
coordinates (x,y) for the sample locations of each residual value, and N(h) is the number of pairs 
of data points separated by h (within a given tolerance of h). The values of the experimental 

variogram r' are plotted as a function of lhl and a variogram model (a mathematical function) is 
fit to these data. Valid variogram models ensure a positive-definite covariance matrix in the 
kriging equations. 

In the current analysis, the infinitely differentiable Gaussian variogram model is chosen to fit the 
experimental variogram. Since freshwater hydraulic head and residuals computed from it are 
assumed to be smoothly varying properties (with well-defined first and second spatial 
derivatives), a variogram that is at least second-order smooth is appropriate. The Gaussian 
variogram model, as implemented in the kriging program KT3D in GSLIB (Deutsch and Joumel, 
1998) is 

y(h) = c{ 1- exp [-e)']} (3) 

where Cis the sill [m2
] and a is the range [m]. The variogram modeling is performed using 

Surfer, which models the Gaussian variogram model without the factor 3 in the exponential. The 
Gaussian model fit to the experimental variogram, computed from the residual heads, is shown in 
Figure 2-5. This model has a nugget value of0.1 m2

, a sill of 40m2 and an effective range of 
7500 m (the 2004 report had a nugget of 13.0 m2

, a sill of 45.2 m2
, and an effective range of 

9000 m). The numbers of data pairs used in the calculation of each point in the experimental 
variogram are also shown. The calculation of the experimental variogram was done by 
considering combinations of pairs of data points in all directions. By not considering direction, 
only distance, the variogram is an omnidirectional calculation using h, where h is the length of 
the vector h. An omnidirectional variogram was also used in the 2004 version ofthis analysis. 

Although a small number of pairs (<30) exist for many ofthe shorter lag spacing in Figure 2-5, it 
is felt this variogram is still valid and representative. The only short-lag observation pairs are the 
redundant wells on the H-19 wellpad. These wells were included in the variogram analysis to 
get some approximation of the short-lag behavior of freshwater head residual, coupled with the 
knowledge that the freshwater head residual is a smooth function (i.e., the reason the 
differentiable Gaussian variogram was used in the first place). The model variogram used in 
2004 had a much larger nugget value than the current model does (13 m2

- compared to 0.1 m2
), 

but the 2004 model did not use the redundant H-19 wells, which solely contribute to the short-lag 
experimental variogram. 

Although it is possible to calculate directionally dependent variograms, this was not done. The 
steep north-south hydraulic head gradient observed in the Culebra across the WIPP site is 
coincident with the densest clustering of observation wells (see steep segment in the center of 
Figure 2-1 ). This produces a greater east-west correlation between data compared to correlation 
in the north-south direction (across the steep gradient) for the entire domain. Since most ofthe 
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domain where kriging is being used to estimate values is outside the L WB, an anisotropic model 
would be misrepresentative of this apparent anisotropy, although it may fit the observed data. 
Although kriging effectively handles clustered data during the estimation process, the effects 
which data clustering can have on the variogram modeling process must be considered by the 
analyst. 

. ., ·• . 

fres.hwater H&ad Resfdual Vanogram 
OirediQn: 0.0 TOlerance: 90.0 

" . 

I)~~ X(]fi '¥)'.)) 4!Xlr! 'i&'liJ i;O()f' 7000 11(11:)(: 

1"9!M""~" 

lag width = 400 m 

Freshwater Head Residual Vario~am 
Direction: 0.0 Tolerance: 90.0 

65 72 63 

3000 4000 5000 5000 7000 8000 9000 10000 

La,gDistance 

lag width = 1000 m 

Freshwater Head Residual Variogram 
Direction· 0.0 Tolerance: 90.0 

Lag Distance 

lag width = 2000 m 

Figure 2-5. Experimental variograms (points) and best-fit Gaussian model variogram (lines) for three 
different lag widths. NB: there is a factor-of-three difference in definition ofvariograms between Surfer and 

GSLIB (multiply lag by 3.0). 

It is possible to fit different models or models with different parameters to the same data, but it is 
felt that the choice of variogram model and parameters given here sufficiently represents the data 
and corroborates with the presumed knowledge of the system. If a different type of surface were 
fit to the data, the residuals would have a different structure and therefore a different variogram 
as well. 

Following up on results of the trend surface sensitivity to removing a steel-cased well (see 
Section 2.1 ), the experimental variogram is re-computed for each well removed and shown in 
Figure 2-6. The exact values of the experimental variograms are not important, just the 
qualitative observation that the relative variability between the different experimental variograms 
is small. Both the change in the best-fit surface, and the subsequent changes in the variogram of 
head residuals, due to removing (or adding) a single observation will diminish as the dataset 
becomes larger. For the current dataset of over 40 monitoring points, the variogram is virtually 
unchanged upon removal of a steel well, re-calculation of the trend surface (see Figure 2-4) and 
residuals and model variogram calculation (see Figure 2-6). 
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Figure 2-6. Experimental variograms after removing a steel-cased well (variogram for all wells shown in red). 
Residuals are re-computed based on the best-fit linear trend for each new set of wells and the variogram is re

computed for each new set of residuals. 

2. 3. Ordinary Kriging 

Kriging is a geostatistical algorithm for estimating a property at unsampled locations. The 
kriging equations are formulated to provide an unbiased, minimum variance estimate of the 
property from a linear combination of the surrounding measured data. Kriging additionally 
provides a measure of the uncertainty associated with each estimate. The uncertainty measure is 
known as the kriging variance or the estimation variance. Details on the many variants of the 
kriging algorithm and its application can be found in the literature, e.g., (Deutsch and Journel, 
1998; Goovaerts, 1998). For this work, we use ordinary kriging (OK) and the details of the OK 
algorithm are presented briefly. 

Consider the problem of estimating the value of a continuous attribute, z, (e.g. head residual) at 
an unsampled location u. The information available consists of measurements of z at n locations 
Ua, z(ua), a= 1 ,2, ... , n. Kriging is a form of generalized least-squares regression and therefore 
all univariate kriging estimates are variants of the general linear regression estimate z*(u) defined 
as 

n(u) 

z* (u)- m(u) = l:A-a(u)[z(ua)- m(ua)] 
a=i 

where Aa(u) is the dimensionless weight indicating the contribution of z(ua)- m(ua) to the 
estimate of z* (z at unsampled locations), and m(u) is the trend or mean component of the 
spatially varying attribute [m]. 

The most common kriging estimator is OK, which estimates the unsampled value z*(u) as a 
linear combination of neighboring observations 
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n(u) 

z~K(u) = LAa(u)z(ua) (5) 
a=l 

OK weights Aa are determined so as to minimize the error or estimation variance if(u) = 

Var { z * ( u) - z( u)} under the constraint of unbiasedness of the estimate. These weights are 
obtained by solving a system of linear equations, which is known as the ordinary kriging system 
of equations. Solution of the kriging system requires that covariance, Cov(ua.,up), between any 
two locations be calculated. Covariance is derived from the variograrn model under an 
assumption of second-order stationarity. The unbiasedness of the OK estimator is ensured by 
constraining the weights to sum to one, which requires the definition of the Lagrange parameter 
f.l( u) within the system of equations (Bazaraa et al., 1993 ), 

n(u) 

I1Lp(u) y(ua- Up)- f.l(U) = r(ua- u) 
P=I 
n(u) 

LILp(u) = 1. 
P=I 

a= 1, ... ,n(u) 

The kriging variance is also derived from the set of weights and the Lagrange parameter 
determined through solution of (6) and it is given as: 

N 

O"~K(u) = Cov(u,u)- L/LaCov(u,ua.)- f.1 
a=l 

(6) 

(7) 

The covariance [m2
] used to calculate the ordinary kriging variance is derived from the model 

variogram. The covariance between two points separated by zero lag, Cov(u,u) = Cov(O) is 
equal to the variance of the data set. It is important to note that the OK variance is not a direct 
function of the specific data values, other than how those data values define the experimental 
variogram of the residuals (see discussion associated with Figure 2-6), to which the model 
variogram is fit. 

2.4. Estimation Variance Calculations 

The program KT3D (Deutsch and Joumel, 1998) is used with the model variograrn determined 
above (estimated and plotted using Surfer) to calculate both the estimated residuals and variance 
at all locations. The full calculation domain is 87188 100-m x 100-m cells, with 36213 of those 
cells (41 percent) inactive, lying either beyond the no-flow boundary on the west or the 
composite H2/M2 - H3/M3 Rustler halite margins on the east. Those inactive cells are not 
included in the calculations of estimation variance. For the calculations done herein, the average 
estimation variance both within the flow domain and within the WIPP site are calculated for 
different monitoring well configurations. 

The map of estimation variance for the May 2007 monitoring network defined in Table 2-2 is 
shown in Figure 2-7. The effect of the monitoring network configuration on the resulting 
estimates of variance is obvious. The lowest estimation variance values (blue) occur at the well 
locations and the highest values (red) occur at locations that are beyond the distance of the 
variogram range (7500 m) away from existing wells. The minimum possible value of the kriging 
variance is the value ofthe nugget in the variogram model (0.1 m2

). The maximum kriging 
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variance in these calculations is approximately 46.4 m2
• In the following analysis, the actual 

values of the kriging variance are not significant, it is only the relative changes in the kriging 
variance due to the addition, or subtraction, of wells to or from the monitoring network that are 
of interest. 

The full monitoring network of 48 wells and the model variogram calculated from the head 
residuals at those wells produce an average estimation variance within the flow domain of 
29.1 m2 and an average estimation variance within the land withdrawal boundary of7.0 m2

. 

From Figure 2-7 it is obvious that there are many locations outside of the WIPP site where the 
addition of a well would have large impact on the estimation variance. Within the WIPP site, the 
estimation variance is already relatively low at nearly all locations. In fact, given the small 
distances between some wells relative to the range of the variogram, it is possible to remove 
some of the existing wells within the WIPP site boundary with only minimal increase in the 
estimation variance. 
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Figure 2-7. Kriging estimation variance for freshwater head residuals. Steel-cased wells are red circles, 
fiberglass wells are green squares, WIPP LWB is solid black line. 

2.4. 1. Add one new well 
Any proposed new well locations can be added to the current well network and the estimation 
variance can be recalculated including the additional point. This approach takes advantage of the 
fact that the estimation variance does not depend on the data values, only on their spatial 
configuration. This approach does require the assumption that the model variogram does not 
change significantly with the addition of new locations (analogous to the qualitative sensitivity 
study illustrated in Figure 2-4 and Figure 2-6 for the case of removing one well). 
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Figure 2-8 and Figure 2-9 show the relative effects an additional observation point has on the 
model-domain-wide mean and median of the kriging variance, computed as 

A 2 _ (a_;l) - (a~ase) 
ua+l - - 2 

(abase) 
(8) 

where ()~ 1 is the kriging variance for the case with one additional well, (J~ase is the variance for 
the base case with the 2007 well network and (x) is the averaging operator (in this case averaged 
over the model domain). Steel-cased wells are red circles, fiberglass-cased wells are green 
squares. The contours in these figures illustrate the decrease in the domain-wide average 
variance, not the distribution of the variance due to any one distribution of wells. While the 
mean and median largely show the same trends, the median values are larger and their 
distribution is less sensitive to a few extreme high or low values, which can skew the mean. 
Areas with a small average decrease (i.e., inside and near the L WB) indicate an additional 
observation at these locations would not significantly improve the estimation variance, averaged 
over the entire domain. The highest values (i.e., the red 'bulls-eye' areas in Figure 2-8 and 
Figure 2-9) are located midway between wells along the periphery of the monitoring well 
network. 
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Figure 2-8. Percent decrease in mean kriging variance over model domain due to one additional well 

Figure 2-8 and Figure 2-9 account for edge effects near the boundaries of the domain. Areas of 
high kriging variance (i.e., the red regions in Figure 2-7) mostly correspond to the areas where 
the largest mean change in variance occurs upon the addition of a new observation point. In the 
comers ofthe model domain (especially the southeast comer), the increase is not so large, 
indicating that much of the effects of a new observation point at this location would be "wasted" 
outside the model domain. 
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Figure 2-9. Percent decrease in median kriging variance over model domain due to one additional well 

Figure 2-10 shows the fractional change in the standard deviation of the kriging variance due to 
the addition of one more observation location. The standard deviation of the values in the 
kriging variance field is computed across the entire matrix of values corresponding to adding one 
additional observation location, without regard to spatial distribution of values. A negative value 
(blue) indicates the additional location will "smooth out" the kriging variance field (lowering its 
standard deviation), while a positive number (red) indicates the kriging variance field becomes 
more variable; a heavy black line indicates the zero-change contour. The positive (red) regions 
are located in areas distant to the WIPP L WB, and indicate where an additional well would 
"extend" the current network. The negative regions (blue) are located closer to the WIPP L WB, 
and indicate where an additional well would "fill in a gap" in the current network. 
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Figure 2-10. Percent change in standard deviation of kriging variance over model domain due to one 
additional well; heavy black line is zero contour. 

Similar calculations were also done with the WIPP L WB as the area of interest, excluding a 
small area in the southeast corner ofthe LWB that is constant head in the Culebra MODFLOW 
model. The region that affects the results within the WIPP L WB is confined to the center of the 
model domain. The edge effects are clearly evident for the case of averaging over the WIPP 
L WB, only the L WB and a 3.5-km region surrounding the LWB are shown in Figure 2-11 
through Figure 2-13. 
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Figure 2-11. Change in mean kriging variance over WIPP LWB due to one additional well 
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Figure 2-12. Change in median kriging variance over WIPP LWB due to one additional well 

Figure 2-11, Figure 2-12, and Figure 2-13 indicate the southwest comer ofthe LWB is the 
location that would maximally benefit from an additional monitoring location. The northeast 
comer is next in relative importance for a new location. Figure 2-12 indicates that the northwest 
comer would have the largest effect on the median kriging variance across the WIPP L WB. All 
three figures indicate that the areas along the periphery of the L WB, where there are no existing 
wells would be good locations for reducing uncertainty through an additional observation point, 
because a large number of wells already exist in the center of the WIPP L WB. 
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Figure 2-13. Change in standard deviation of kriging variance over WIPP LWB due to one additional well 
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2.4.2. Remove one steel well 
The same approach for determining the variance reduction due to the addition of a new 
monitoring well can also be used to compute the potential increase in the estimation variance 
from the removal of an existing well. In this case, it is possible to recalculate the variogram 
model from the remaining wells after any number of wells are removed; however, to make the 
process more efficient, the same variogram is used for all calculations done herein. This 
approach assumes that the variogram does not change significantly with the loss of any one of 
the wells (see discussion associated with Figure 2-6). 

Each existing steel-cased well is removed and the average estimation variances across the flow 
domain and the WIPP site are recalculated. Those wells that cause the smallest increase in 
average estimation variance are the ones that could be removed with a minimal impact on the 
ability of the monitoring network to provide accurate predictions ofheads at locations without 
monitoring wells. The results of these calculations are shown in Table 2-3. 

Table 2-3 shows the change in the average estimation variance within the flow domain as well as 
within the WIPP site area as calculated for the less-by-one networks associated with removing 
steel-cased wells. Removal of fiberglass-cased wells is not considered, since they are expected 
to have a long useful life. Table 2-4 shows the same results only averaged over the WIPP L WB 
when steel-cased wells are removed from the network. Removal of wells that result in the 
largest increases in the estimation variance are the wells that are most important with respect to 
the ability of the network to predict heads. Therefore, if the goal is to predict heads across the 
entire domain, the wells that create the largest increases in estimation variance when removed 
are generally those located distant from other wells: H-1 Oc, USGS-4, H-9c, AEC-7, H-11 b4, and 
WIPP-11. Small decreases in the estimation variance can also occur with the removal of a well 
(e.g., ERDA-9, H-3b2, H-2b2, and WIPP-19). These decreases are due to the configuration of 
the current wells creating negative kriging weights in the solution of kriging equations (see 
positive values in mean and median columns of Table 2-3 and Table 2-4). These decreases are 
always less than two-tenths of one percent of the original variance and are considered as 
insignificant near-zero changes in this work. 
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Table 2-3. Results of estimation variance changes over the entire model domain for the removal of one steel
cased well from the network. A large integer rank indicates an important well, while a small rank is 

associated with wells with little impact on the entire model domain. 

lA standard 
A mean A median 

avg 
deviation I rank 

ERDA-9 0.48% 2 O.I9% I 0.13% 2 1.67 
H-3b2 0.49% 3 O.I9% 2 0.13% I 2.00 
H-2b2 0.52% 4 O.I8% 3 O.I3% 2 3.00 
WIPP-I9 0.75% 5 0.09% 4 0.13% 2 3.67 
H-I7 I.36% 9 -0.24% 5 0.02% 6 6.67 
H-I2 0.46% I -1.78% IO -3.13% II 7.33 
H-4b 1.46% IO -0.36% 6 -0.13% 7 7.67 
WIPP-25 I .04% 7 -1.10% 8 -1.49% 9 8.00 
WIPP-13 2.00% 13 -0.70% 7 0.07% 5 8.33 
H-7bi I.22% 8 -2.13% II -2.54% IO 9.67 
H-5b 2.5I% 15 -1.26% 9 -1.09% 8 10.67 
W1PP-11 0.80% 6 -3 .26% 14 -3.52% 13 II.OO 
H-11b4 1.67% 11 -2.62% I3 -3.47% 12 I2.00 
AEC-7 2.I5% 14 -2.52% 12 -3 .86% 14 13.33 
H-9c 1.88% 12 -3 .97% I5 -7.20% I6 I4.33 
USGS-4 2.59% 16 -4.39% I6 -6.98% I5 I5.67 
H-10c 3.90% I7 -4.88% I7 -7.80% 17 17.00 

The five wells that could be removed from the network and create the smallest increase in the 
mean or median estimation variance are those wells in close proximity to other existing wells. 
These include: ERDA-9, H-2b2, H-3b2, H-17, and WIPP-19 (see Table 2-3 and Figure 2-14). 
The change in the standard deviation of the kriging variance is shown in Figure 2-14. 
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Figure 2-14. Change in estimation variance averaged across entire model domain (data from Table 2-3) 
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The wells on the other end of the spectrum, which would have the largest effect on the mean or 
median estimation variance, include wells on the periphery of the domain (i.e., large bars in 
Figure 2-14). 

Table 2-4. Results of estimation variance changes over WIPP Land Withdrawal Boundary for removal of one 
well from the network. A high rank indicates importance while a low rank indicates little impact on the area 

within the L WB. 

lA standard 
A mean A median 

avg 
deviation I rank 

H-IOc O.OOOI% I O.OOOOI% I 0% I 1.00 
AEC-7 O.OOOI% 2 -O.OOOI% 2 0% I 1.67 
USGS-4 O.OI% 3 -0.02% 3 0% I 2.33 
H-9c 0.48% 7 -0.09% 4 -0.02% 5 5.33 
WIPP-II 0.23% 4 -0.72% 5 -0.65% 8 5.67 
WIPP-25 0.84% 8 -0.89% 6 -O.OI% 4 6.00 
H-3b2 0.33% 6 -1.32% 7 -0.5I% 7 6.67 
ERDA-9 0.87% 9 -1.37% 8 -0.42% 6 7.67 
H-2b2 1.07% IO -1.88% 9 -0.90% 9 9.33 
WIPP-13 0.27% 5 -2.83% IO -5.67% I6 I0.33 
WIPP-I9 1.65% II -2.85% II -4.3I% 11 Il.OO 
H-7bi 24.04% I4 -7.5I% 13 -1.57% 10 I2.33 
H-IIb4 Il.87% I2 -7.35% I2 -5.64% I4 I2.67 
H-I2 I2.88% 13 -7.70% I4 -5.66% I5 I4.00 
H-4b 28.I2% I5 -I1.73% I6 -4.65% I2 I4.33 
H-I7 29.34% I6 -I1.57% I5 -4.75% 13 I4.67 
H-5b 47.64% 17 -I9.I5% I7 -6.72% I7 I7.00 

The removal of wells far from the WIPP site creates the largest increases in the estimation 
variance averaged over the flow domain, but the removal of many of these steel-cased wells has 
little or no effect on the estimation variance averaged across the WIPP site. These wells, AEC-7, 
H-9c, H-10c, USGS-4, and WIPP-25 are too far away from the WIPP site to directly impact the 
mean or median estimation variance inside the L WB. The most important monitoring wells, 
those that create the largest variance mean or median increase upon removal, for predicting 
heads within the WIPP site are: H-5b, H-4b, H-11b4, H-12, and H-17. All these wells are 
located near the LWB (H-12 being the furthest away from the LWB). Some of the wells have 
very large effects on the standard deviation of the kriging variance within the site, but the trends 
also follow those for the mean and median kriging variance. 

Figure 2-15 summarizes the results in Table 2-3 and Table 2-4 graphically, indicating where the 
wells with high or low rank are located geographically. 
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Figure 2-15. Steel-cased wells ranked by effect of removal on kriging variance; symbol sizes are proportional 
to overall rank (and therefore importance), data in Table 2-3 and Table 2-4. MOD FLOW active model 

domain delineated in green, WIPP LWB is black square. 

The wells that create the smallest increases in estimation variance upon removal for both the 
WIPP site and the flow domain are: ERDA-9, H-2b2, and H-3b2. Any one of these three wells 
could be removed with minimal effect on the ability of the network to predict heads across both 
the domain and the WIPP site. These calculations are for removal of a single well. 
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Figure 2-16. Change in estimation variance averaged across WIPP LWB, data in Table 2-4 

2.4.3. Remove Two Steel Wells 
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Based on expectations that the following steel wells will soon need to be replaced or P&Aed: 
WIPP-25, WIPP-13, H-12 and H-7b1; the analysis ofthe previous section is carried out 
removing each of these wells, then additionally removing each of the remaining steel-cased wells 
one at a time. 

Table 2-5 shows the percent change in the kriging variance averaged across the entire model 
domain computed as (changed - base )/base for combinations of steel-cased wells being removed. 
The 4x 17 image shows the same results in the table. This shows that removing AEC-7 and H-
9c, along with any of the three wells represented as columns, makes a large relative change 
across the entire model domain. This is to be expected, as both of these wells are far away from 
other wells; removing two wells a large distance from each other affects the largest potential 
area. Conversely, the column corresponding to WIPP-13 leads to the smallest relative changes 
(some even being slightly positive), indicating the kriging area of influence for this well has a 
large amount of overlap with those from other wells, since this well is located in the north
central portion of the WIPP L WB. 
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Table 2-5. Change in mean kriging variance across model domain upon removal of two steel-cased wells; 
integer values indicate rank within each column 

H-12 H-7b1 WIPP-13 WIPP-25 

I AEC-7 -4.15% 15 -4.17% 15 -2.49% 14 -3.70% 14 

2 ERDA-9 -1.52% 3 -1.53% 3 0.11% 2 -1.09% 2 

3 H-IOc -4.18% 16 -1.73% 8 -2.51% 15 -3.72% 15 

4 H-llb4 -1.78% 8 -3.27% 14 -0.09% 5 -1.29% 6 

5 H-12 ]B -1.76% 9 -1.61% II -2.81% II 

6 H-17 -1.51% I -1.52% I -0.10% 6 -1.30% 7 

7 H-2b2 -1.53% 5 -1.55% 5 0.09% 3 -1.10% 4 

8 H-3b2 -1.51% 2 -1.53% 2 0.12% I -1.08% I 

9 H-4b -2.09% 9 -2.10% 10 -0.46% 7 -1.65% 8 

10 H-5b -2.41% II -2.43% 12 -0.78% 9 -1.98% 10 

11 H-7bl -3 .27% 13 -1.62% 12 -2.84% 12 

12 H-9c -3.95% 14 -4.19% 16 -2.29% 13 -3.51% 13 

13 USGS-4 -2.31% 10 -2.33% 11 -2.56% 16 -3.78% 16 

14 WIPP-11 -1.61% 7 -1 .62% 7 -0.70% 8 -1.88% 9 

15 WIPP-13 -1.53% 4 -1 .55% 4 -1.18% 5 

16 WIPP-19 -2.81% 12 -2.84% 13 -1.18% 10 -1.10% 3 

17 WIPP-25 -1.58% 6 -1.60% 6 -0.05% 4 
~" 1 

Table 2-6 gives the same statistics as in Table 2-5, but the results are averaged over the area 
within the WIPP L WB only (rather than the entire model domain). The conclusions from this 
analysis are different, since WIPP-13 is now the column which on average is darkest blue, 
(rather than lightest in Table 2-5). Wells H-4b and H-5b are the two "row" wells which have the 
largest negative change across the four columns. These wells are located on or near the WIPP 
L WB, similar to how AEC-7 and H-9c from the analysis in the previous paragraph, are located 
along the periphery of the model domain. 
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Table 2-6. Change in mean kriging variance across WIPP LWB upon removal of two steel-cased wells; 
integer values indicate rank within each column 

H-12 H-7b1 WIPP-13 WIPP-25 2. 

AEC-7 -0.03% 3 -0.09% 2 -1 .95% 2 0.00% 2 -0.02 
ERDA-9 -0.69% 8 -0.76% 7 -2.65% 9 -0.67% 8 4 
H-10c -0.03% 1 -7.45% 13 -1 .95% 1 0.00% 1 
H-11b4 -7.70% 14 -0.12% 4 -9.32% 13 -7.36% 14 -0.04 

6 
H-12 -10.50% 15 -1.97% 6 -0.03% 5 
H-17 -0.08% 5 -0.14% 5 -3 .07% 12 -1.13% 12 
H-2b2 -1 .05% 11 -1.12% 10 -2.99% 11 -1.03% 11 

8 -0.06 

H-3b2 -0.30% 7 -0.37% 6 -2.22% 8 -0.28% 7 
H-4b -11.49% 16 -11.64% 16 -13.40% 16 -11.46% 16 
H-5b -7.71% 15 -7.78% 14 -9.66% 14 -7.69% 15 

10 
-0.08 

H-7b1 -0.12% 6 -2.04% 7 -0.10% 6 12 

H-9c -0.03% 2 -0.09% 1 -1.95% 4 0.00% 4 -0.1 
USGS-4 -0.75% 9 -0.81% 8 -1.95% 3 0.00% 3 14 

WIPP-11 -1.97% 12 -2.04% 11 -2.83% 10 -0.72% 9 
WIPP-13 -0.92% 10 -0.98% 9 II -1.95% 13 • -0.12 16 
WIPP-19 -0.03% 4 -0.10% 3 -1.95% 5 -0.89% 10 
WIPP-25 -3 .35% 13 -3.41% 12 -10.32% 15 I 

2 4 

In Figure 2-17 and Figure 2-18 the overall rank (between all 64 combinations of two steel-cased 
wells, rather than 16 steel-cased wells individually) is plotted against the distance between the 
two wells comprising the pair as a measure of the impact of removing a pair of wells. The 
overall rank is computed as an average ofthe results of three metrics (mean, median and 
standard deviation of the change in the kriging variance). 

Figure 2-17 shows a weak positive correlation (R2=0.35 fit through all points) between the 
relative impact of removing a pair of steel wells and the distance between those wells, when the 
impact is averaged over the entire model domain. A high rank indicates a higher impact to the 
kriging variance averaged over the model domain; a low rank indicates low impact. Wells which 
are separated by large distances tend to have the largest cumulative effect. The different symbols 
in the figure show that individual wells (these four symbols correspond to the wells represented 
as columns in Table 2-5) tend to also follow this trend 

Figure 2-18 shows the same results, only averaging the impact over the area encompassed by the 
WIPP LWB. Here the correlation is even weaker, and also negative. Wells that are closer 
together have a larger relative impact when they are removed. WIPP-13 (black triangles) is only 
associated with higher rank pairs (>32), but in general all the individual wells follow the weak 
overall trend. 
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Figure 2-17. Rank and distance between wells for removal of pairs of steel-cased wells, averaging effects 
across the entire model domain (R2=0.35 for linear fit). High numerical rank indicates a large impact on the 

model-wide kriging variance. 

WIPP-25, H-12, and H-7b1 are all located outside the WIPP LWB. WIPP-13 is inside the WIPP 
LWB, and all pairs ofwells including WIPP-13 have high rank in Figure 2-18. The smallest 
linear dimension across the WIPP LWB is 6.4 km (east-west or north-south), while the largest 
linear dimension ofthe WIPP LWB would be a diagonal across the site 9.09 km. Pairs ofwells 
with distances larger than these values must include at least one well outside the L WB, possibly 
both. The pairs of wells with very large separations are pairs of wells where both wells are 
distant from the WIPP site. Removing these wells would obviously have little direct impact on 
the region inside the WIPP L WB. 
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Figure 2-18. Rank and distance between pairs of steel-cased wells, considering WIPP LWB (R2=0.14 for 
linear fit). Vertical dashed lines represent the min (6.4 km) and max (9.1 km) distances across the LWB. 

High numerical rank indicates a large impact on the kriging variance inside the WIPP LWB. 

This analysis supports the idea that removing two distant steel-cased wells from the network has 
the largest impact on the kriging variance, averaged over the entire model domain. The 
relationship that inter-well distance plays in the removing of two wells, when only considering 
the area within the L WB is more complex and less conclusive. Apparently, there is a negative 
correlation between distance and importance, but likely because wells with large inter-well 
separations are likely distant to the WIPP L WB as well. 

All the well-removal scenarios in this section have the assumption that the variogram does not 
change upon removal of the selected wells. In situations where we are only removing one well, 
this is a very good assumption (see discussion associated with Figure 2-6); removing two or 
more wells still should not violate the assumption that their removal would not change the 
vanogram. 

2. 5. Kriging Variance Reduction Summary 

It is relatively simple to calculate the decrease or increase in the kriging estimation variance over 
a specified area from the addition or removal of one or more monitoring wells. The maximum 
reduction in estimation variance, or increase in the ability to predict heads, can be achieved by 
placing a new monitoring well in any location of the flow domain that is far away from an 
existing well or the model boundary. There are a large number oflocations in the domain where 
a new well could be placed to meet this condition. At this point in the analysis, a maximal 
reduction in variance from a new well can be considered as a necessary input, but not sufficient 
condition for locating a new well. 
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Removal of wells from the existing monitoring network was also examined using the kriging 
estimation variance. The impact of well removal was evaluated by calculating the increase in 
estimation variance for both the entire flow domain and the area within the WIPP L WB. These 
calculations were done for the removal of a single well from a base case of 42 wells and the 
results are only valid for the removal of the one specified well. These results also safely assume 
that the variogram is constant across all monitoring network configurations (see Figure 2-6). 
These calculations were completed again for removal of combinations of multiple wells when 
those combinations of interest are defined. Wells that are most important to the existing 
monitoring network that should not be removed are listed above and are, generally, those wells 
most distant from any existing wells. Wells that have the smallest influence on the ability of the 
current network to predict heads at unmeasured locations across the entire flow domain as well 
as within the WIPP site are also listed above. If more than one well is to be removed, the 
combinations of wells should be selected from this list. 

2. 6. Kriging Variance Reduction Run Control Summary 
The kriging variance reduction analysis performed in this section is described here in terms of 
files, programs, and scripts used. The required files are located on the CD and are described in 
sufficient detail to allow recreation of the results given in the text. 

2.6.1. Linear trend fit and variogram calculations 
The linear trend fitting to the computed freshwater head values (see Section 2.1, Table 2-1, and 
Figure 2-3) was computed in the COTS statistical software R. The script 
plot _linear_ fit_ summary. R (Section 8.2.1) uses the built-in linear model function l m () to 
produce a linear fit, then standard statistics are produced by summarizing this fit (see see Table 
2-1 produced by summary() in line 15 of script) and standard diagnostic plots (see Figure 2-3) 
are created by plotting this fit (see lines 16 and 17 of script). 

The sensitivity ofthe experimental variogram to removal of a single steel-cased well was 
investigated (see Figure 2-4 and Figure 2-6) using the Python script 
remove_one_variogram_effects .py (Section 8.2.2). This script loaded the well data (lines 
4 through 35) and performed a least-squares fit of a linear surface (see Equation 1) through the 
data (e.g., see Menke (1984), Chapter 3), looping through the data to remove one steel-cased 
well at a time, re-computing the fit (lines 37 to 58). An ASCII text file was output (see line 24 
for the filename) with summary statistics relating to each network-minus-one fit corresponding 
to the lines of the output file. This csv file was imported into MS-Excel, resulting in the plot of 
relative percent change in the slope and direction of the best-fit linear surface due to removing 
each steel-cased well, as shown in Figure 2-4 (see file 
trend surface remove one results. xls on the CD in the - - - -
report/figures/02_kriging directory). 

This same Python script also wrote a set of data files corresponding to the main dataset less a 
single steel-cased well for variogram analysis. These data files were imported into Surfer for 
experimental variogram plotting to create Figure 2-6; see the CD in directory 
report/figures/02_kriging for the data files and resulting Surfer file 
perturbation_spread_of_variograms. srf used to plot this figure. In the same directory 
on the CD, the Surfer file used to generate the final experimental variogram plot in Figure 2-5 
can be found (may2007_variogram_modela. srf). 

Page 43 of 133 



 

 Information Only 

AP-111 Rev. 1 Monitoring Network Design Optimization 

2.6.2. Kriging variance reduction calculation 
The kriging variance minimization (see Section 2.4) consisted of a main Python script, 
krig_plus_one .py (Section 8.2.3), which drives the kriging process for different inputs and 
summarizes the outputs. This main script uses two subsidiary scripts shared_data.py 
(Section 8.2.4) and kt3d driver. bat (Section 8.2.5) to perform its duties. 

2.6.2.1. Kriging add one 
The krig_pl us_ one. py script is explained here. Most of the first half of the file (lines 18 to 
130) is the definition of the function kri g(), which is called with arguments related to where to 
put an additional data point. Lines 28 through 53 are the input file for KT3D saved as a string 
having key parameters in the input file substituted with variables passed to the function (e.g., see 
pattern %(varname) d on lines 38 and 39). The data file used as input to KT3D is written on 
lines 56 to 61, potentially with an additional point appended to the end of the file. The DOS 
batch file kt3d_dri ver. bat is called to run kt3d. exe on lines 65 to 73. The kriging 
variance output created by running KT3D is read on lines 75 to 78, while certain subsets ofthe 
variance arrays are selected on lines 87 and 88. Lines 91 through 130 are located inside a 
threading with lock block, since they are writing summary results to a global variable (there are 
potentially more than one thread running at a time and the lock is to prevent two threads 
attempting to write at the same time and corrupting the data). Lines 95 through 115 are related 
to model-domain wide statistics, while lines 117 through 130 are related to the same statistics but 
only computed over the WIPP L WB. 

The actual program flow begins at line 139, with the reading and preparation of various data 
from disk (lines 139 to 207). The last portion of the script (inside the if _name_ == 
"_main_" conditional on line 214) is only executed if the script is called from the command 
line. This portion is not executed if the script is imported (as is done in the 
krig_remove_one_steel.py and krig_remove_two_steel.py scripts). This final 
section sets up the arrays for saving the results (lines 216 to 218), calls kri g() with the original 
unmodified dataset for comparison (line 220), and loops over all locations on a grid, adding one 
point at a time to the analysis (lines 229 through 242). Finally, the results of the entire analysis 
are saved to disk (lines 251 through 260 - these results are on the CD in the 
analysis/kriging/kriging_add_well/output directory); these matrices of results are 
used to plot the color figures in Section 2.4.1 using the MATLAB script 
krig_add_one_plotting. m one the CD in the report/figure/02_kriging/ directory 
(since this MATLAB script was not used for analysis (only creation of color contour maps from 
ASCII data files), it is not listed in Section 8.2). 

At lines 171 through 175, ASCII matrices are imported that indicate whether a given model cell 
is inside the active portion of the MODFLOW model domain. These matrices are written by the 
MATLAB script generate_model_cell_masks. m (Section 8.2.6), which uses the built-in 
function i npo l ygon () to determine which cells are inside the irregular polygon defining the 
MODFLOW active model area. 

The krig_plus_one .py script is threaded because each call to KT3D takes roughly 10 to 15 
seconds and there are tens of thousands of locations in the model domain where a point can be 
added; since the results of adding each point are done individually, the problem lends itself well 
to parallelization (i.e., a speedup of over four times using eight processors). 
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2.6.2.2. Kriging remove wells 
As already stated, the scripts that run KT3D for the analysis of removing a well from the network 
import the majority of their functionality from the krig_plus_one. py script described in the 
previous section. The scripts for removing one (Section 8.2.7) and two wells (Section 8.2.8) are 
quite similar, and are described here. Each script reads in the relevant well and model domain 
data, the in the remove-one well case each steel well is individually removed from the network 
and the kri g() function defined in the import krig_plus_one. py script are called to do run 
KT3D and summarize the results (lines 34 to 49). The results are written to ASCII files (see 
lines 44 through 49) for summarizing into Table 2-3, Table 2-4, Figure 2-14, and Figure 2-16. 
The source of the tables and bar-chart figures is saved in the spreadsheet 
remove one well results2 2010 .xls on the CD in the 
analysis /kriging /kriging_ remove_ steel/ directory. 

The map in Figure 2-15, showing the relative importance of removing steel-cased wells from the 
network with respect to the entire domain and the WIPP L WB, was created in Surfer from the 
tabular results. The Surfer file (remove_one_steel_well. srf) is included on the CD in the 
report/ figure/ 02_kriging/ directory. 

In the remove-two-wells case, a list of four "most likely to be removed" steel-cased wells are 
used as the first well, then the remaining steel-cased wells are each additionally removed, 
similarly calling the imported krig () function to run kt3d and summarize the results (lines 38 
to 68). Similarly, these results are written to files for summary in Table 2-5 and Table 2-6. 

The source of the scatter plots in Figure 2-17 and Figure 2-18 and the tables of data is the 
spreadsheet remove_two_well_results3 .xls, located on the CD in the 
report If igure/ 0 2 _kriging I directory. 
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3.0 Local Gradient Estimation with Triangulation 

The methodology used for local gradient estimation in the previous revision of this analysis 
report (McKenna, 2004) and in the associated follow-up paper (McKenna and Wahi, 2006) 
involved the use of "three-point estimators" to assess the ability to estimate head gradients in a 
2D aquifer. The analysis presented here is instead in terms of a simpler approach using non
overlapping Delaunay triangles (a small subset of the triangles included in the three-point 
estimators). 

Although three-point estimators have been used several places in the literature to estimate a 
regional gradient value from observed data; see e.g., (Cole and Silliman, 1996; Conwell et al., 
1997; Silliman and Frost, 1998; Silliman and Mantz, 2000; McKenna and Wahi, 2006), few 
practicing hydrologists take this approach to estimating the gradients when presented with 2D 
head data. It is a more common approach to contour observed heads (i.e., potentials), estimating 
gradients from equipotential contours. While there are numerous techniques for creating contour 
maps from point measurements (e.g., kriging, inverse distance, splines), linear interpolation 
could be considered the most basic and easily understood approach. Often a geologist will 
sketch in the results of linear interpolation between data as a first step to hand contouring depth 
or thickness data, and then they will modify these results with their own professional judgment. 
In two dimensions, three points define both a triangle and a piecewise-constant estimate of the 
gradient across that triangle. A group of more than three points defines a network of triangles 
(bounded by their convex hull) and a piecewise-constant estimate of the gradient across the area 
inside the convex hull. 

Linear interpolation is used for the local gradient-based estimation, since linear interpolation is a 
straightforward method that is easy to visualize and understand, and triangulation is readily 
implemented using available tools in the COTS software MATLAB (i.e., the built-in functions 
delaunay() and voroni ()). 

3. 1. De/aunay Triangulation 
In the three-point estimator approach of(McKenna, 2004), all possible combinations ofthree 
points were constructed into triangles to assess the quality of the network (with a fraction of the 
triangles discarded based on selection criteria). Many thousand overlapping triangles made 
visualization of results difficult (see Figure 3-1). For 30 wells, there are 4060 possible three-well 
combinations and for 40 wells there are 9880 possible combinations. In the current approach, 
the much smaller subset of non-overlapping triangles produced by Delaunay triangulation is 
used. 

Since the triangles will not overlap, the gradients estimated with this technique are as local as 
possible with the given set of points. When using overlapping triangles, the selection of one 
gradient estimate over another (when two triangles cover the same area) may become complex, 
or some sort of averaging must be done to produce a useful result. 
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Figure 3-l. All possible triangles (left) and corresponding gradient vectors (right) for May 2007 Culebra 
monitoring network (as was used in the three-point estimator approach from first revision of this report). 

Vectors are log10 length scaled; tails of vectors are anchored at the center of their triangle. 

Given a 2D set of data points, Delaunay triangulation produces a set of triangles, where each 
triangle bounds a point and its natural neighbors (see Figure 3-2a). Delaunay triangles are 
directly related to Voronoi polygons, which are the unique polygons circumscribing the area 
closer to a given observation well than any other well (see Figure 3-2b ). 

Delaunay Triangles Voronoi Polygons 

0.8 

0.6 

0.4 

0.2 0.2 

a b 
o~~~-~-~~~-~ 

0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Figure 3-2. Delaunay triangles and Voronoi polygons for 10 randomly located points (red symbols). Black 
circle with green center used to illustrate the relationship between triangles (a) and polygons (b). Red lines 

indicate the convex hull, (c) shows both sets of polygons together. 

Some properties of these unique triangles and polygons are: 
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• Delaunay triangles uniquely tessellate the area within a convex hull enclosing the data 
(except in certain symmetric cases); 

• Voronoi polygons fill the entire plane; the polygons corresponding to the data on the 
convex hull have infinite area; 

• Vertices of Voronoi polygons correspond to the centers of circles that uniquely go 
through the three neighboring points (see Figure 3-2b ); 

• In a square grid of points, Delaunay triangles become right isosceles triangles (two equal 
angles and sides) and Voronoi polygons become squares (see Figure 3-3). 

• In a triangular grid of points, Delaunay triangles become equilateral and V oronoi 
polygons become regular hexagons (see Figure 3-4). 

Three points are the minimum required to estimate direction and magnitude of a gradient from 
2D point observations; Delaunay triangles therefore define piecewise-constant gradient over the 
area enclosed by the convex hull surrounding all points. Delaunay triangles, when assigned z 
values at the vertices (i.e., heads), become a triangular irregular network (TIN); these are often 
used in engineering to approximate irregular surfaces. 

0.25 I 
. __ J.___ _ _j__ __ +----~ ----

~--~~~~~~ 
0.25 0.5 0.75 

Figure 3-3. Delaunay triangles and Voronoi polygons for symmetric square grid; note ambiguity in triangles 

0. 

·~r . r ~- . 
~~~+----'-----+-

0 0.25 0.5 0. 75 

Figure 3-4. Delaunay triangles and Voronoi polygons for symmetric triangular mesh 

The regular grids of points in Figure 3-3 and Figure 3-4 illustrate the shapes oftriangles that 
arise under these ideal conditions (compared to the random arrangement of points in Figure 3-2, 
and seen in the following Culebra monitoring network analysis). 
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Voronoi polygons are not used in this analysis, but they are included in this introductory 
discussion because it is clear that they are unique for a given set of points and there is a unique 
mapping from Voronoi polygons to Delaunay triangles, therefore it is illustrated how the 
Delaunay triangles are also unique. The non-unique case corresponds to the extreme symmetry 
shown in Figure 3-3; squares can equivalently be cut into triangles along either diagonal. This 
will not affect the results of this analysis, since the Culebra monitoring wells are not located on a 
symmetric rectangular grid. 

3.2. Triangle Shape Metric 

To rank the quality of the shape of triangles, the ratio of the minimum and maximum of the 
interior angles is assessed; this value is believed to capture the quality of a triangle for the 
purposes of gradient estimation from three data points. The lengths of the sides of the triangles 
can be related to the size of the angles through the law of sines, 

a sin(A) 
=---'----~ 

b sin(B)' 
(9) 

where a and bare the shortest and longest sides of the triangle (i.e., the min/max length ratio), 
and A and B are the corresponding largest and smallest angles of the triangle - angle A opens up 
to side a (i.e., the ratio of the sines ofthe min/max angles). 

In the case illustrated in Figure 3-3, the triangles have angle ratios of 0.5 (one 90° and two 45° 
degree angles). Figure 3-4 illustrates triangles with an angle ratio of 1 (three 60° angles); this is 
the maximum ratio. Using the angle ratio as the metric, therefore the "best" triangle is an 
isosceles one. Likewise, triangles with one dimension or angle much smaller than the others will 
have a very small angle ratio, approaching zero in the limit as the three points become collinear. 
Triangles with large aspect ratios (proportional to the inverse of the angle ratio) tend to produce 
worse estimates of the gradient, based on an assumed unbiased normal distribution of errors 
associated with observing heads in a well (McKenna and Wahi, 2006). 

Figure 3-5 shows the distribution of triangle size, interior angle ratio and the magnitude of the 
gradient computed from observed May 2007 freshwater heads. In Figure 3-5a, the logarithm of 
area is used to color-code the triangles that make up the 2007 Culebra monitoring network. Some 
very elongate triangles have small areas, considering how distant the wells are that make up their 
comers (e.g., the blue triangle along the west-central edge ofthe area, comprising wells WIPP-
25, IMC-461, and SNL-16). Figure 3-5b shows the distribution of the angle ratio, for the 2007 
Culebra network; the dark red triangles are nearly isosceles, while the dark blue triangles have 
one large obtuse angle. Figure 3-5c shows the logarithm ofthe head gradient magnitude, 
computed from the three comer wells. Aside from the two anomalously high gradient areas 
associated with SNL-6 and SNL-15 (east-central and north-east areas), there is an east-west 
yellow band across the middle of the model area, with blues north and south of it, representing 
the observed higher freshwater head gradient across the center ofthe LWB (e.g., see Figure 2-1). 
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Figure 3-5. Distribution of geometry metrics for 2007 Culebra well network: (a) area of triangle, (b) angle 
ratio, and (c) May 2007 freshwater head gradient magnitude. 

Figure 3-6 shows scatter plots of the quantities represented spatially in Figure 3-5 (each dot 
represents a triangle); these illustrate that there is essentially no correlation (positive or negative) 
between the triangle angle ratio and area (a), or the angle ratio and the magnitude of the gradient 
(b). This is because angle ratio represents the triangle shape, while shape and size are two 
unrelated quantities (in this case). Additionally, the gradient is a function of the head observed at 
the wells, while the angle ratio is not affected by observed head. Figure 3-6c indicates a 
possible, but very weak, negative correlation between the size of triangles and the gradient 
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magnitude. There is a greater density of wells within the WIPP L WB, where steeper gradients 
are observed; this trend is corrupted by the anomalous steep gradients associated with large 
triangles containing SNL-6 and SNL-15. 

Based on this heuristic analysis, the angle ratio is thought to be an adequate primary metric for 
triangle quality. Triangle size is considered to be independent information, but it is not directly 
correlated with a desired monitoring network objective. While smaller triangles resolve more 
detail than larger ones, a dense network is much more expensive and large triangles are 
allowable in the portions ofthe domain further from the WIPP land withdrawal boundary. This 
metric obviously only considers the network geometry; there may be important hydrologic or 
geologic information to be gained from locating a well at locations which may be sub-optimal 
solely from a geometric point of view. 

Freshwater head gradient direction and magnitude are illustrated in Figure 3-7 using vectors 
scaled to the gradient magnitude. Figure 3-7a shows the network for the 2007 Culebra 
monitoring network, while Figure 3-7b shows the remaining network after leaving out SNL-6 
and SNL-15, which are non-representative ofheads west of the composite H2/M2- H3/M3 
Rustler halite margins (Johnson, 2009). Leaving out these two wells removes the spurious large 
gradients around these wells, but also changes the overall shape of the network on the eastern 
third of the domain (see Figure 3-7). 

Figure 3-8 and Figure 3-9 show the same quantities in Figure 3-5 and Figure 3-6 for the 
Delaunay triangles that correspond to the existing network without SNL-6 and SNL-15. Most of 
the triangles in the domain are unaffected by leaving these wells out, since only 10 triangles 
include either of these points in the existing network. Apparent changes elsewhere in the domain 
are due to rescaling of the color gradient in the figures, because the minimum or maximum 
values are linked to triangles changed by leaving out these two wells. The steeper gradient 
across the WIPP LWB is more evident in Figure 3-8c (due to color scaling). The negative 
correlation between area and gradient is also clearer in Figure 3-9c, as most of the large triangles 
with steep gradients were connected to the low values in either SNL-6 or SNL-15. 

This section introduces the triangle interior angle ratio as a continuous metric that identifies 
isosceles-like triangles and is not spuriously correlated to triangle size or observed gradient 
between head observations at wells. Based on the comparison with and without SNL-6 and 
SNL-15, these wells are left out of any analysis that requires head values (i.e., the remove-one
well analysis) 
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Figure 3-6. Scatter plots of relationships between different triangle metrics for 2007 Culebra well network. 
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Figure 3-9. Scatter plots of relationships between different triangle metrics for 2007 network without SNL-6 
and SNL-15. 

3. 3. Add One New Well 

Similar to Section 2.4.1, we explore the effects of adding one more monitoring well to the 
network, but using the angle ratio metric discussed in the previous section. For each model cell 
in the Culebra MODFLOW model grid, a monitoring point is added, and the triangulation 
process is repeated. Statistics regarding the resulting triangular network are summarized in the 
following plots. 
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Figure 3-10. Increase (red) or decrease (blue) in area-weighted (a) median and (b) mean angle ratio for 
triangle network, due to one additional well. 

The addition of an observation point can only be judged using geometry metrics, because the 
head that would be observed at the new location is yet unknown. Figure 3-10 shows the 2007 
Culebr~ monitoring network (red circles are well locations, green lines are the Delaunay triangles 
for the 2007 Culebra well network). Contour colors indicate whether adding a well at that 
location andre-triangulating the network (not shown) would increase or decrease the interior 
angle ratio, averaged over the model domain. 

The mean and median angle ratios shown in Figure 3-10 are weighted by triangle area. Each 
triangle' s angle ratio is multiplied by its area, and then the mean or median of these products (for 
all the triangles in the network) is divided by the total area covered by the network. The total 
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area inside the convex hull surrounding the whole network may increase if the proposed 
monitoring point is located outside the convex hull of the current network. 

Areas that are blue in Figure 3-10 indicate locations where a new well would create additional 
large elongate triangles in the Delaunay network. Triangles with low angle ratios make poor 
estimators of the local gradient. Areas between wells in the southern and eastern parts of the 
domain show the largest relative increase (red) in both the mean and median triangle shape 
metric averaged across the model domain. The north-central portion of the domain shows a large 
positive increase in the median triangle shape metric, but not in the mean (the median is less 
sensitive to large changes in a single triangle, e.g., along the southern edge of the network). An 
additional monitoring point at a red location in Figure 3-1 Oa orb would be the best in terms of 
the relative geometry of the resulting network. These locations change large elongate triangles 
into smaller triangles with three similar angles; smaller, more symmetric triangles are better for 
estimating local gradients, given the same relation between the observed gradient and 
measurement error. 

McKenna and Wahi (2006) (and likewise the 2004 version of this analysis) performed statistical 
analyses of three-point estimators to evaluate their ability to estimate the gradient from three 
point measurements, as a function of the relative head measurement error (RHME), the 
orientation of the principle groundwater flow direction, and triangle shape. This analysis only 
takes the triangle shape or size into account. Triangles that are small and symmetric, but which 
cover an area of very low gradient magnitude may be bad estimators as well, given the current 
distribution ofheads. This analysis only considers the geometry of the network. 
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Figure 3-11. Increase (red) or decrease (blue) in median triangle area, due to including one additional well 

In Figure 3-11, the relative change in the median triangle size is shown for the same scenario of 
adding one additional well to the network. Although triangle size is not the main metric, it 
shows different information from the angle ratio plot. Since adding a monitoring point to the 
network will always create more triangles, but the total network area will only change if the 
additional well is outside the original convex hull; Figure 3-11 shows whether the additional 
location will make nearby triangles smaller or larger. Most of the regions within and near the 
WIPP L WB are blue, indicating the triangles in the proposed network will on average become 
smaller, while new wells located at the extremities ofthe existing network will increase the 
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median triangle size, especially the area along the southern end of the no-flow boundary (see 
bright red area in west-central portion of Figure 3-11). 

Following common sense, Figure 3-11 shows that adding monitoring locations near the edges of 
the domain will add more large triangles to the existing network. Adding a point near the middle 
of the domain will instead add more small triangles to the existing network, since the density of 
wells inside the WIPP L WB is already high. This does not consider the fact that expanding the 
overall size of the monitoring network would likely add useful information, regardless of the 
network shape. 

3.4. Remove One Steel Well 
Compared to the addition of a new well, more can be said about the removal of a well from the 
network, since heads have been observed at the location proposed for removal. In this section, 
the effect of removing a well is computed by first copying the results of triangulation (which 
assigns a piecewise-constant gradient value to every point inside the convex hull) onto points 
corresponding to the centers of the finite-difference cells of the MODFLOW model grid. Only 
points in the MODFLOW grid which fall within the convex hull are compared. 

H-4b H-Sb H-7b1 H-9c H-10c H-11b4 H-12 
removal of steel-cased vvell 

Figure 3-12. Change in mean area-weighted angle ratio (averaged over model domain) upon removal of each 
steel well from monitoring network (no SNL-6 or SNL-15). Red bars are wells located on convex hull. 

In Figure 3-12, AEC-7 has the largest impact on the mean area-weighted angle ratio metric. 
Excluding the steel cased wells which form the boundary of the triangulation (shown in red) 
leaves H-4b, H-7b1, and H-Sb with the largest impact, with wells USGS-4 and WIPP-25 having 
the smallest impact, even though they makeup part of the convex hull. 

Page 56 of 133 



 

 Information Only 

AP-111 Rev. 1 Monitoring Network Design Optimization 

H-5b H-7b1 H-9<: H-10c H-11b4 H-12 
removal of steel·cased well 

Figure 3-13. Change in median area-weighted angle ratio upon removal of each steel well from monitoring 
network (no SNL-6 or SNL-15). 

In Figure 3-13 H-2b2, H-11 b4 and H-17has the approximately the same impact on the median 
area-weighted angle ratio, but wells H-2b2, H-11b4 and WIPP-19 now also have large percent 
change values (compared to Figure 3-12). These two bar charts (Figure 3-12 and Figure 3-13) 
correspond to Figure 3-10 parts a and b for the case of removing one well to the network. 

log10(area) effected (0.001) by removal [m2
] 

AEC-7 ERDA-9 H-2b2 H-3b2 H-4b H-5b H-7b1 H-9c H-10c H-11b4 H-12 H-17 USGS-4 WIPP-11 WIPP-13 WIPP-19 WIPP-25 
removal of steel-cased well 

log 10(area) effected (0.01) by removal[~) 

remowl of steel-cased well 

Figure 3-14. Area affected (A gradient magnitude 2:: 0.01) by removal of steel well 

Figure 3-14 shows the area affected by the predicted change in gradient between the 2007 
monitoring network and the reduced network with the corresponding steel-cased well removed. 
The changed area is defined as the area where the relative change in gradient magnitude is 
greater than or equal to 0.01 (lower figure) or 0.001 (upper figure). After removing each well, 
the Delaunay triangulation is recomputed, and the observed gradient is computed for each 
resulting triangle. The marked difference between the two bar charts in Figure 3-14 indicates 
that although there is a very large amount of area that would be slightly affected by removing 
any one steel well (large number of bars in the upper figure), there is very little of the model 
domain that would be significantly affected by any one well being removed (bottom figure). 
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Table 3-1. Ranking of steel-cased wells based on triangle gradient estimators. A low numerical rank indicates 
importance. 

%.<1mean %.<1 median average 
angle ratio angle ratio rank 

H-17 3.58 7 19.61 1 4 
H-lOc 6.09 4 9.27 5 4.5 
H-llb4 3.38 8 19.61 1 4.5 
H-7b1 6.07 5 7.04 6 5.5 
H-9c 7.02 2 5.75 9 5.5 
H-2b2 2.73 12 19.61 1 6.5 
H-4b 6.34 3 3.09 10 6.5 
AEC-7 8.65 1 1.51 14 7.5 
H-3b2 3.13 9 6.87 7 8 
ERDA-9 3.09 10 6.87 7 8.5 
WIPP-19 2.70 14 14.61 4 9 
H-5b 4.47 6 0.00 16 11 
WIPP-13 2.75 11 3.08 11 11 
USGS-4 0.96 16 2.74 12 14 
H-12 2.72 13 0.00 17 15 
WIPP-11 1.44 15 0.00 15 15 
WIPP-25 0.36 17 1.51 13 15 

These bars represent the areas colored in the figures in the figures in Section 9.0. The individual 
figures in Section 9.0 show the localized effects of removing a well from the network; the 
colored areas only immediately surround the well being removed. The effects due to removing 
wells in areas with small triangles (e.g., inside and near the WIPP L WB) will obviously only 
propagate out to a small area. Wells that are part of large triangles along the periphery of the 
domain will affect larger areas when removed. 

3.5. Remove Two Steel Wells 

Using the same list of"probable" wells from section 2.4.3 (kriging variance reduction), the local 
gradient estimator analysis of the previous section can be repeated for each of the networks with 
one of the steel-cased wells already removed. Table 3-2 shows the cumulative effect that 
removing two steel-cased wells has on the domain-average mean angle ratio (see Figure 3-12 for 
the corresponding single-well analysis). The percent changes (illustrated in the color image) 
show that removing any pair of wells including H-10c (row 9) or most wells in a pair with well 
H-7b1 (row 7, column 4) lead to improvements in the geometric layout ofthe observation wells, 
because these wells are involved in several large elongate triangles. These types of 
improvements are not the goal of this analysis. Well H-9c (row 8) shows the largest decrease in 
the domain-average angle ratio metric, corresponding to the worst effects on the well network; 
this well is on the southern edge of the network. 

Table 3-3 shows how median triangle size in the network increases (red) or decreases (blue) as 
pairs of steel-cased wells are removed from the network. Removing other steel-cased wells in 
conjunction with H-1 Oc (row 9) would decrease average triangle size because the convex hull 
becomes smaller upon removal of this well. 
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Table 3-2. Change in domain-average mean angle ratio upon removal of 2 steel-cased wells. Image illustrates 
percentages given in table, in same row/column order. 
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Table 3-3. Change in domain-average median triangle size upon removal of 2 steel-cased wells. Image 
illustrates percentages given in table, in same row/column order. 
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3. 6. Local Gradient Estimator Summary 
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The local gradient estimator analysis presented in this section considers the effects of adding a 
well and removing a well or two, from the perspective of the network and head gradient 
estimation geometry. The metric which was used to compare potential triangular networks was 
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mainly the ratio of the maximum and minimum angles, with the median triangle size used as a 
secondary metric. 

3. 7. Local Gradient Estimator Run Control Summary 

The local gradient estimator analysis performed in this section is described here in terms of files, 
programs, and scripts used. The required files are on the CD and are described in sufficient 
detail to allow recreation of the results given in the text. All the analysis in this section was done 
using MATLAB, and the calculation and plotting of results are partially mixed together in the 
scripts. 

3. 7. 1. Triangles: add a well 
The MATLAB script triangles_add_one. m (Section 8.3.1) is the main script that performs 
the calculations for the evaluation of additional locations in terms of Delaunay triangles. This 
section describes the script's basic behavior. The first lines ofthis script load in the required 
data from files (lines 1 to 30). A rectangular array ofx andy locations (UTM NAD27 Zone 13 
[m]) are created using meshgri d() (lines 32 through 34), which is then compared to the 
polygon defining the active model domain using i npo 1 ygon () (line 36), to determine the cells 
that are inside the active MODFLOW domain. These matrices are then unwrapped into vectors 
to simplify indexing (line 40). 

The main loop of this script (lines 45 through 111) goes over each potential new location (plus 
one for the base case with no additional monitoring locations), re-triangulating the network (line 
59). The results of de 1 aunay()is a matrix with three columns corresponding to the three 
vertices of each triangle, and a row for each triangle. The values in this matrix are integer 
indices pointing to the values of the x andy coordinates passed to del aunay(). For example, if 
tri=delaunay(x, y), where x andy are each a vector of3locations, tri will be a 1x3 
matrix, where the comers of the triangle specified by the first (and only) row of tri are obtained 
addressed like x ( t r i ( 1 , [ 1 , 2 , 3] ) ) , y ( t r i ( 1 , [ 1 , 2 , 3] ) ) . The g eom matrix stores the 
results of the geometric calculations for each triangle in the network; rows 1-3 are the lengths of 
the sides (computed using the Pythagorean theorem - lines 70 to 77), rows 4-6 are the angles 
between the sides (computed using the cosine law- lines 80 to 87), and row 7 is the area of the 
triangle (computed using the built-in MATLAB function po 1 yarea () -line 90). The interior 
angle ratio is computed from the maximum and minimum interior angles (line 93). Some 
summary statistics regarding the entire triangle network are saved into the matrix Q; the area
weighted angle ratio average and median are computed, as wells as the average and median 
triangle size are computed (lines 95 to 1 09). 

After looping over all possible locations, the matrix Q contains different average results for each 
point in the domain that is inside the active MOD FLOW flow domain. The results for the 
existing Culebra network with (Figure 3-5, Figure 3-6, and Figure 3-7) and without SNL-6 and 
SNL-15 (Figure 3-7, Figure 3-8, and Figure 3-9) were plotted from the geom matrix, for the case 
with no additional wells. 

These summarizing results (Q matrix) are saved to ASCII file (lines 116 to 123- see files in 
analysis\triangle_metric\output\ directory on CD) and plotted to make color contour 
maps shown in Figure 3-10, and Figure 3-11. 
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The MATLAB script redwhitemap. m (see Section 8.3.2) is used by the 
triangles_ add_ one. m script just described, to create a color legend corresponding to blue 
being negative, red being positive and white being zero, based on a vector of data passed. This 
script only is used for creating a colormap for plotting figures in MATLAB, but is included here 
for completeness. 

3. 7.2. Triangles: removal steel-cased wells 
The triangles_remove_one. m MATLAB script (Section 8.3.3) does much of the same that 
the triangles_add_one. m script in the previous section did, but it also computes things 
related to the freshwater head gradient across triangles between wells. 

Similar to the previous triangle metric script, the first portion of the script loads data from file 
(lines 8 to 34 ), but here a series of nested for loops are used to find the wells on the convex hull 
(for marking them in the bar chart figures -lines 38 to 46). The main loop of the script re
computes the metrics related to the triangle, removing a different steel-cased well each time 
through the loop. In addition to geometry metrics related to the triangles (geom and Q matrices, 
line 144 through 176), the gradient defined by the freshwater head observed at the three comers 
of the triangles is also computed using Cramer's rule and saved into the coeff matrix (lines 98 
to 122). 

The gradient estimates are individual values for each triangle in the network (piecewise 
constant), but to compare the effects of removing a well from the network, which will result in a 
different network, the values are copied onto a 100m square grid at each step (lines 125 to 136). 
This is done by cycling through the triangles in the network (typically about 30 or 40 triangles), 
each time selecting the cells from the 100 m square grid that are inside the triangle (using 
i npo l ygon () ), assigning the gradient from the triangle to all the cells that fall inside it. The 
rest of the script is used to plot figures for the analysis report (Figure 3-12, Figure 3-13, and 
Figure 3-14, and the figures in Section 9.0), using the data computed in the main loop. 

The triangles_remove_two. m MATLAB script does essentially the same thing as the 
remove-one script, but takes a list of four "likely to be P&Aed" wells, removing each of these 
first, then doing the remove-one-well process outlined above. The matrices resulting from this 
script are made into Table 3-2 and Table 3-3. 
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4.0 Model Correlation Analysis 

In addition to the variance reduction and local gradient estimator approaches to monitoring 
network design, a third approach is used here to incorporate uncertainty captured in the 
performance assessment (PA) simulation into the monitoring network design. These calculations 
also incorporate recent updates in the geologic conceptual model and the influence of these 
updates on the spatial distribution of transmissivity within the Culebra. These recent updates in 
the geologic conceptual model have been used to produce the base transmissivity fields used in 
this study and are summarized in the Culebra T-fields summary report (Kuhlman, 2010b). 

4. 1. Background 
The goal of this portion of the report is to include a third independent metric in the overall 
optimization that specifically addresses the P A monitoring network design goal of providing 
head and aquifer transmissivity data for defensible calibration ofPA models. Additionally, the 
approach developed here specifically incorporates P A information in the form of groundwater 
travel times from the repository area to the boundaries of the WIPP L WB. This approach makes 
use of the existing ensemble of calibrated transmissivity fields (Hart et al., 2009) such that no 
additional groundwater flow and/or transport modeling is necessary. 

4. 2. Calculating Sensitivity Coefficients 
The sensitivity of model outputs to changes in model inputs arises in the calibration, uncertainty 
analysis, and cost optimization of both analytic and numerical models. A model can range in 
complexity from a linear analytic expression to a complex numerical model. In general, a 
sensitivity coefficient, S, is calculated as the partial derivative of a model output with respect to 
each model input parameter: 

s = aoi ,, aP 
.I 

{10) 

where S!f is the sensitivity coefficient of the model prediction, 0, at the ith observation point to 
the /h model parameter, P1. S!f is an nxm matrix (i.e., the Jacobian matrix) with the number of 
rows equal to the number of model parameters (n) and the number of columns equal to the 
number of observations (m) (Zheng and Bennett, 2002). S!f is often given in a normalized or 
dimensionless form, through appropriate scaling factors; this matrix often plays a key role in 
parameter estimation techniques such as in the conjugate gradient, Newton iteration, or 
Levenberg-Marquard algorithms. 

4.2.1. Sensitivity Equation Method 
The expression governing the process which controls how parameters (P1) are related to outputs 
( Oi) can sometimes be differentiated using calculus. This method is usually only applicable to 
simple lumped-parameter or analytic equation models. Although this approach is quite problem
specific, it leads to closed-form expressions for the sensitivity matrix. The form of the 
sensitivity equations often provides insight to the underlying process without needing to evaluate 
the problem for specific parameter values. Because the P A model considered here is an 
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ensemble of calibrated MODFLOW models with irregular distribution of parameters and 
boundary conditions, this analytic sensitivity equation approach is infeasible. 

4.2.2. Perturbation Approach 
The derivative in Equation (1 0) can be approximated using finite differences. A small 
perturbation is made in a single model input (L1P1), leading to a set of perturbed model outputs 
which are differenced with model predictions from a base case Oi (P1), and normalized by the 
change in the parameter. 

{11) 

This is the most generally-applicable and widely-used approach to estimating sensitivity 
coefficients; for example, this is the approach taken in inverse-modeling codes such as PEST 
(Doherty, 2002). 

If a model has n parameters for which sensitivity information is desired, then at least n+ 1 model 
runs must be performed to compute the one-sided finite difference given in Equation (11 ). For 
higher-order accuracy, often 2n+ 1 model runs can be used to estimate derivatives via centered 
finite differences. For large highly-parameterized models (i.e., thousands of parameters or 
more), the perturbation approach often leads to unmanageably large computing demands. For 
the inverse problem, there are many approaches for either reducing the number of parameters 
which require derivatives; e.g., pilot points and singular value decomposition are both methods 
used with PEST in the WIPP Culebra P A model calibration (Hart et al., 2009). 

When working with an ensemble of independent calibrated models, SiJ is computed separately for 
each realization, and then ensemble sensitivity can be computed by appropriately averaging 
across the realizations. Although this approach was used to calibrate the P A models and the 
resulting PEST-computed sensitivity matrices (i.e., Jacobians) are saved in CVS, this approach 
was not used due to two complications. First, the sensitivities in the MODFLOW model are 
computed between observed heads and pilot point values (not particle travel times to individual 
parameter values in the model grid). Second, these sensitivity matrices were only computed at 
the beginning of the calibration, due to the use of the singular value decomposition, which works 
with "super pilot points" rather than the pilot points themselves. 

4.2.3. Adjoint Sensitivity Approach 
An alternate approach to computing SiJ using finite differences is the use of the adjoint sensitivity 
equations, where a system of adjoint equations are derived (similar in form to the diffusion 
equation) and solved using the same model grid with modified boundary conditions and source 
terms. The sensitivity coefficients are related directly to the adjoint variable, rather than the 
main variable (typically head or pressure). Although this method is very problem-specific, it has 
the advantage of making the number of model runs needed to compute SiJ proportional to the 
number of model predictions or observations (m), rather than the number of model parameters 
(n) (see e.g., Sykes et al., (1985) (1985)). The adjoint approach was used at WIPP during the 
CCA, in the GRASPII inverse modeling code (see e.g., RamaRao and Reeves (1990)). 
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Like the perturbation-based approach, the adjoint method works independently on each 
realization, requiring appropriate averaging across realizations to develop ensemble-based 
estimates of parameter sensitivity to model predictions. 

4.2.4. Sampling-Based Correlation Approach 
In the three sensitivity calculation approaches outlined above, the changes in model predictions, 
due to perturbing each parameter are kept separate; the derivative in Equation 10 is a partial 
derivative indicating all other independent variables are held constant while each P1 is varied. 
Individually perturbing each of the model parameters has the benefit of isolating each 
parameter's effects on the model predictions, but it demands a large number of forward model 
runs to fill in the large sensitivity matrix. For the WIPP Culebra P A flow model, we have an 
existing ensemble of calibrated model realizations, which can be used to statistically investigate 
the correlation between input parameters and the predictions in a post-mortem sense, after all the 
model runs are finished. The previous three approaches were for a single realization, requiring 
averaging to reach an ensemble average; the correlation-based approach uses all the realizations 
to develop a proxy for sensitivity applicable to the WIPP P A model results. 

The correlation-based approach used here begins with an ensemble of 1 00 calibrated models and 
the metric for relative importance of one model parameter over another is the parameter's 
correlation with the model prediction, across the ensemble of model realizations. 

Each of the 100 simulations associated with the calibrated T-fields prepared for CRA 2009 
PABC (Hart et al., 2009) is a realization where all the parameters are "perturbed" together, rather 
than individually perturbing parameters by LJP1. For a given element in the Culebra flow model, 
there are 100 values of each parameter (e.g., transmissivity); a histogram of log10(Kerr) in a cell 
south of the WIPP site, and histogram of the travel time to the WIPP L WB are plotted across all 
100 realizations in Figure 4-1. 

aK = 0 .65 (@row 251 , coll40) a1 = 0.083, a/(1= 0 .014, p = 0 .06 
16.---~------~----~-----. 

16 14 

14 
12 

12 

log10(travel time) [years] 

Figure 4-1. Example histograms of a model parameter (log10(K.,H)) at a particular cell and model prediction 
(log10(travel time to WIPP LWB)) across alllOO realizations. 
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The ensemble correlation approach requires multiple calibrated model realizations, and therefore 
captures some of the uncertainty captured by the ensemble of models. This is in contrast with 
the perturbation or adjoint sensitivity approaches which take one calibrated model and use it to 
estimate parameter sensitivity (essentially assuming a linear approximation of the actual model). 
To capture the uncertainty given by the ensemble, the perturbation sensitivity approach would 
have to be performed for each realization of the ensemble - a computationally exasperating 
process (tens of thousands of individual parameters in each ofhundreds of models, with 
potentially long run-times for each forward run). 

McKenna (2004) compared sensitivity coefficients computed using the sampling correlation 
approach for 1 00 realizations to those computed with the perturbation sensitivity approach for a 
single realization, and found that they were similarly but not identically distributed. Although in 
the sampling-based approach it is not possible to completely differentiate between true and 
spurious correlations (partial correlation does account for some of this in a statistical sense), the 
approach is used here based on its computational feasibility and the availability of the 100 
realizations. 

As opposed to S!f, which is the slope of the linearized relationship between model inputs and 
outputs, the correlation coefficient, p, is a measure of the quality of the linear relationship 
between two variables (regardless of slope). The correlation coefficient is given by 

apo ~Lf=l(Pi- mp)(Oi- mo) 
PPo = 

a0 ap a0 ap 
(12) 

Where ap is the variance ofthe parameter P, mp and m0 are the means of P and 0 respectively, 
ao is the variance of the observation 0, and apo is the covariance between P and 0. p indicates 
the portion of the variance of 0 which is explained by the variance in P, through an assumed 
linear relationship (e.g., see Isaaks and Srivastava, (1989), Chapter 3). 

When there is more than one free parameter varied at a time, partial correlation is defined as the 
correlation attributable to a single variable, statistically holding others constant (e.g., see Helton, 
et al., (2006) §6.4). Partial correlation is demonstrated for the case where a third variable Z is 
introduced into the problem illustrated in Equation (12); 

PPo- PPZPoz 
PPO.Z = I 2 2 

vC1 -ppz)(1 -Poz) 
(13) 

where the variables to the right of the dot in the subscript are statistically held constant. This 
expression reduces the correlation between two variables, by the amount attributed to the 
spurious correlation between both variables and a third one (here Z). When dealing with more 
than three variables, there are two primary approaches to computing partial correlation. 
Conceptually, the simplest is a recursive definition, which is an extension ofEquation (13) (e.g., 
(Spiegel and Stephens, 1999), chapter 15), 

PPo.z - PPY.zPov.z PPo.Y - PPz.vPoz.Y 
PPO.YZ = .J 2 2 = .J 2 2 

(1- PPY.z)(1- Pov.z) (1- PPZ.Y )(1- Poz.Y) 
(14) 
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but this recursive approach becomes difficult to compute as the number of variables gets above 4 
or 5 (being impossible for hundreds or thousands of variables as in the case for the WIPP model). 
An alternate definition of Equation (14 ), in terms of correlation matrices is 

(15} 

where p . . (k--- . . ) is the partial correlation of variables i and j, accounting for the effects of all other 
1]. ..-!,] 

variables; aiJ is the matrix inverse of the symmetric correlation matrix C, which in the 3x3 case is 

P1z 
1 

P3z 

P131 Pz3 
1 

(16} 

Often C can be poorly scaled and computing partial correlation due to many variables can be 
numerically unstable, as C can be nearly singular and therefore has an ill-defined inverse. The 
COTS statistical software R includes an implementation (cor2pcor) which computes partial 
correlation of systems with many variables, utilizing a numerically stable pseudo-inverse 
approach, automatically scaling the matrices to improve stability. Even though the improved 
numerical approaches help, the matrix-based approach is intractable for very large problems, 
because an xn matrix must be made (where n is the number of active parameters, here over 
50,000) in memory; even for single-precision variables this is on the order of a 30-gigabyte 
matrix. A comparison is made between regular and partial correlation in the results section, 
using only the area immediately surrounding the WIPP site. 

4. 3. Model Correlation Results 

The calibration of the 100 T fields to steady-state and transient heads did not incorporate the 
groundwater travel time as an estimation variable. The travel time from the center of the WIPP 
panels (also the location ofthe Culebra well C-2737) to the WIPP LWB was a separate 
calculation done after the T fields were calibrated; see Figure 4-2 for the travel times and Figure 
4-3 for the particle tracks across all100 realizations. 
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Figure 4-2. Travel times to WIPP LWB for conservative particle (non-dispersive, reactive, with no decay) for 
100 realizations used in correlation analysis 

The sampling-based sensitivity approach was applied to the results of the 100 calibrated T fields 
and used to determine the sensitivity of the groundwater travel time to the WIPP boundary with 
respect to the simulated heads, and effective hydraulic conductivity Kerr (the geometric mean of 
the x- andy-direction hydraulic conductivities), 

(17) 

where A is the horizontal hydraulic conductivity anisotropy and Ky=KxA. Transmissivity (1) and 
hydraulic conductivity (K) differ in the Culebra MODFLOW model by a constant thickness, 
which does not affect correlation calculations. The distribution of Keff, including the mean and 
standard deviation, across all100 realizations is plotted in Figure 4-4. The results of these 
calculations for the Keff are shown in Figure 4-5. Nearly all the wells shown in Figure 4-5 were 
used in the calibration of the Keff parameter fields (except AEC-7 - see discussion in Section 
1.5). 
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Figure 4-3. Marked water particle tracks from each of the 100 realizations; each track goes from the release 
point at C-2737 to the WIPP LWB (heavy black square). Green circles are Culebra monitoring wells. 
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Figure 4-4. Mean and standard deviation of log10(K.rr) across alllOO realizations 

The correlation results for Kerr (see Figure 4-5) show that the magnitudes of the correlation 
coefficients are not very large in most areas, signifying weak to moderate correlation, both 
positive and negative, between the travel time to the WIPP boundary and K values used in the 
model to calculate those travel times. However, the results clearly show regions of relatively 
higher and lower travel time sensitivity to the two input parameters. The partial correlation 
statistic (see Figure 4-6) is computed for Kerr in each element near the WIPP L WB, accounting 
for cross-correlation between each element and all other Kerr values in the vicinity of WIPP 
(within 1.5 km ofthe LWB). Although there are small differences in the distribution ofthe 
partial and standard correlation coefficients, the main difference is the absolute value. The 
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partial correlation coefficient is approximately 100 times smaller than the standard correlation 
coefficient. 
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Figure 4-5. Correlation coefficient between log10(K.rr) and log10 travel time to WIPP LWB. Steel-cased wells 
are red circles; fiberglass-cased wells are green squares. Salado dissolution and Rustler halite margins are 

indicated with dashed lines. Plot on right contains same data plotted on left. 
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Figure 4-6. Partial correlation between loglO(K.rr) and log10(travel time) to WIPP LWB 

The distribution of model-generated head, across all 100 realizations, is shown in Figure 4-7; 
here the log10 of the standard deviation is plotted to emphasize the variation in the head across 
the WIPP L WB. It is interesting to note that visually, areas with the highest variability in Keti 
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(Figure 4-4)- one of the main inputs to the Culebra flow model- do not correlate with areas of 
the highest variability in head (Figure 4-7). 
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Figure 4-7. Mean and log10 standard deviation of model-simulated bead across all tOO realizations 

Figure 4-8 shows correlation oflog10 model-predicted travel time to model-predicted head 
(output vs. output); this field is much more smoothly varying than the map of correlation 
between log1 0 travel time and Keff (output vs. input). These results are consistent with the 
difference between model outputs (which must obey the diffusion equation) and the model 
outputs (which only are forced to have certain geostatistical structure, but are otherwise random). 

The partial correlation statistic between model-generated heads and travel times is given in 
Figure 4-9. Like Keff to travel-time correlation, the partial correlation coefficient is much 
smaller, but the difference here is only a factor of approximately 30, rather than 100. 
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Figure 4-8. Correlation coefficient between model-predicted heads and log10(travel time) to WIPP LWB. Plot 
on right contains same data plotted on left. 
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Figure 4-9. Partial correlation coefficient between model-predicted heads and log10(travel time) to WIPP 
LWB. 

The model correlation analysis is the only one of the three given in this report which is not 
sensitive to the clustering of existing wells. Aside from the fact that the model was calibrated 
with data collected at the wells, the location of the individual Culebra monitoring wells and 
model correlation to inputs or output are largely de-coupled. The locations of highest model 
input/output correlation might occur adjacent to existing monitoring wells. 
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4. 4. Remove One Steel Well 

The results of the sampling-based correlation analysis are sampled at locations across the model 
domain, corresponding to the locations of existing steel-cased wells. The results of this are given 
in Table 4-1, where the numbers are simply the numerical values sampled from the images of 
correlation results shown in Figure 4-5 and Figure 4-8. 

Table 4-1. Correlation-based analysis results at locations of steel-cased wells. A smaller rank number 
indicates a higher correlation and therefore assumed importance. 

pKerr IPKe~ rank phead 1P head! rank avg rank 
ERDA-9 -2.989x 10"1 2.989xi0-1 1 -2.050x 10·1 2.050x10-1 2 1.5 

H-3b2 -9.670x 10-2 9.670xl0·2 6 -1.936x10-1 1.936x10-1 3 4.5 
WIPP-19 -9.941xl0·2 9.941xi0-2 5 1.885x10.1 1.885x 10·1 5 5 

H-12 1.553x 10·1 1.553x 10-1 3 -1.462xl0·1 1.462x1o-1 8 5.5 
WIPP-11 1.502xl0·1 1.502x10·1 4 -9.576x10-2 9.576xl0·2 9 6.5 
WIPP-13 2.199xl0·1 2.199xl0·1 2 -6.001xl0·2 6.001x10-2 11 6.5 
WIPP-25 -4.109x10-2 4.109xl0·2 13 2.250x1o-1 2.250xl0·1 1 7 
USGS-4 -5.631 x 10·2 5.631 x w-2 11 -1.931 x w-1 1.931 X 10·1 4 7.5 

AEC-7 7.392xl0·2 7.392xi0-2 8 7.241 X 10·2 7.241xi0-2 10 9 
H-11b4 -5.339x 10-2 5.339x10-2 12 1.734x10-1 1.734x 10·1 6 9 

H-4b 3.852xl0·2 3.852x10-2 14 -1.627x10-1 1.627xl0·1 7 10.5 
H-5b -7.394x10-2 7.394xl0·2 7 1.670x 10·4 1.670x 10-4 17 12 

H-10c 6.302xl0·2 6.302xl0·2 9 -1.243 x w-2 1.243x 10-2 16 12.5 
H-17 5.662xl0·2 5.662xl0·2 10 3.295x10·2 3.295xl0·2 15 12.5 

H-7b1 -1.089 x w-2 1.089xl0·2 16 5.448xl0·2 5.448xi0-2 12 14 
H-9c -2.776x10-2 2.776x1o-2 15 5.202xl0·2 5.202xl0·2 13 14 

H-2b2 2.715xi0-3 2.715xl0·3 17 3.768xl0·2 3.768xl0·2 14 15.5 

The results in Table 4-1 are sorted by the average rank between the steel-cased wells for the Kerr I 
log10 travel time correlation (see Figure 4-5) and the head I log10 travel time correlation (see 
Figure 4-8). A smaller rank number indicates a higher relative correlation in the two cases. 
Wells with large rank numbers are wells that are located in areas with less correlation between 
model inputs and outputs. 

4. 5. Model Correlation Summary 

Here, we approximate a true sensitivity analysis using a sampling-based correlation analysis. 
These sampling-based correlation coefficients are consistent with, but different from, the average 
sensitivities calculated as numerical derivatives, as was illustrated in (McKenna, 2004). The 
advantage of this approach to approximating sensitivity is that it is computationally efficient. 
The sampling-based sensitivity coefficients require an ensemble of calibrated Kerr fields, which is 
computationally burdensome, but they provide an integrated measure of correlation to all of the 
calibrated Kerr fields at once. This approach captures the non-uniqueness of the Kerr calibration 
by using all 100 calibrated fields and also provides a measure of output sensitivity to the input 
variables at all locations within the domain. 

Application of the sampling-based sensitivity approach to the Culebra shows distinct regions of 
higher and lower correlation to travel time with respect to both calibrated heads and Kerr· For 
travel time sensitivity with respect to heads, the regions of high and low sensitivity are broad and 
fall mainly within and directly to the south of the WIPP site. Results of travel time sensitivity 
with respect to Kerr show regions of high and low sensitivity that are considerably more 
localized. The two regions with the greatest absolute correlation for both Kerr and model
predicted head are near the C-2737 release point, between the release point and the southern edge 
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ofthe WIPP LWB, and immediately upstream (north) ofthe C-2737 release point. These 
regions of high or low sensitivity can be identified and targeted for additional head monitoring 
wells and measurements of Keff· Results of the spatial sensitivity calculations are combined with 
results of other approaches to monitoring well optimization in the following section 

4. 6. Model Correlation Run Control Summary 

4.6.1. Model file checkout and pre-processing run control (Linux) 
The model inputs (transmissivity and anisotropy) and outputs (head) were checked out from the 
Tfields and MiningMod CVS repositories that are accessible from the PA Linux cluster 
(alice. sandia. gov). The same files exist for each calibrated model realization (see Table 
4-2), and they exist in 100 subdirectories with the names rnnn, where nnn is a three-digit 
number corresponding to the realization name (the numbers range from 001 to 999 and are 
therefore non-contiguous). The Bash shell script checkout_ model_ data. sh (Section 8.4.1) 
checks the required files out ofCVS (lines 9, 18, 49, and 51), does some manipulation ofthe 
directories to simplify the resulting directory structure (lines 30 through 44), and converts the 
binary MODFLOW head files to ASCII arrays (line 67). Finally the entire file tree of input and 
output files are zipped up to simplify transfer to Windows from Linux (see lines 72 to 75-
located on the CD in the analysis\model_correlation directory inside the 
model_files. zip archive). 

Table 4-2. Model files from each calibrated MODFLOW realization 

Model File 
rnnn/modeled_K_field.mod 
rnnn/modeled_A_field mod 
rnnn/modeled_head.hed 
rnnn/dtrk.out 

rnnn/{Update,Update2,} 

Description 
calibrated transmissivity field for realization rnnn 
calibrated anisotropy field for realization rnnn 
model-generated steady-state head for realization rnnn 
particle tracking results for realization rnnn 
empty file indicating if the realization originated in the Update or Update2 directories 
(potentially no file). 

The Python script head_bin2ascii. py (Section 8.4.2) is used on Linux to convert the binary 
MODFLOW head files (saved as record-based Fortran unformatted files) to ASCII arrays, based 
upon the knowledge of the type of data to be expected in the files. Lines 4 through 54 of this 
Python script define the Fortran Fi l e () class which is used to encapsulate the functionality 
needed to read the binary files. Two utility functions (reshapev2m() and floatmatsave()) 
are defined in lines 56 through 70. The structure of the MODFLOW binary head files are quite 
simple; each files is comprised of a single header record and a single array of single-precision 
head values unwrapped as a vector. The header record contains integers related to the size of the 
model array subsequently saved, and the head array is saved after that. The Python script 
reshapes the vector into an array and writes it to an ASCII file in floating point format (line Ill). 

4.6.2. Partial correlation analysis run control (Windows) 
The utility Python script load_ model_ data. py (Section 8.4.3) is called as a library from two 
other Python scripts to load the 100 realizations ofMODFLOW input and output files. This 
script loops over the 100 rnnn subdirectories reading hydraulic conductivity, horizontal 
anisotropy, travel time to the WIPP L WB, and the model-generated steady-state heads (see Table 
4-2). The script then takes the log10 of the K, A and travel times, and defines a logical mask 
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(wippmask) for addressing a subset of the model domain only including the WIPP LWB and a 
buffer of cells surrounding it (lines 58 to 62). 

Once the zip archive of ASCII model files is transferred to Windows, the analysis begins with 
the Python script export_pcor_inputs .py, (Section 8.4.4) which loads the results ofthe 100 
realizations (importing the functionality from the load_model_ data. py script at line 2), 
saving the results to two large matrices to be processed in R for partial correlation analysis. The 
matrices saved include the travel time to the WIPP LWB (a single column) concatenate with the 
head or Keff matrices from a region including the WIPP L WB and a 1 ,500-m buffer surrounding 
the L WB, due to a limitation of the approach. A correlation matrix comprised of every model 
parameter (or head) to every other parameter (or head) is made, the full307x284=87,188 model 
cells would result in a correlation matrix with 7,601 ,921, 721 entries (over 56 gigabytes at double 
precision). The smaller subset of model parameters (WIPP L WB is 64 100-m elements wide and 
tall + a buffer of 15 elements on each side) results in a large correlation matrix that only has 
78,092,569 entries Gust under 596 megabytes at double precision). The R script 
compute_partial_correlations. R (Section 8.4.5) simply reads in the matrices saved by 
the Python script, performs the partial correlation analysis using optimized and numerically 
stable algorithms (a scaled pseudo-inverse, rather than the simpler- but numerically unstable
matrix inverse), then writes the partial correlation between travel time to the WIPP L WB and 
either Keff or head in each model cell inside the area surrounding the WIPP site (the last column 
of the resulting partial correlation matrix - see lines 12 and 19). Output from 
export_pcor_inputs .py and output from compute_partial_correlations .Rare saved 
on the CD, along with the intermediate files, in the 
analysis\model_ correlation \output\ directory. 

4.6.3. Correlation analysis run control (Windows) 
The Python script spearman_rank_coefficient .py (Section 8.4.6) also loads the model 
data using the load_ model_ data . py module, and also loads the results of the partial 
correlation calculation done in R (lines 31 to 39). In the loop from lines 41 to 62, the script 
computes the head vs. travel time and Keff vs. travel time correlations across the 100 realizations 
at each element in the model domain. The partial correlation results and standard correlation 
results are then plotted in several forms for figures in the text (Figure 4-1, Figure 4-2, Figure 4-5, 
Figure 4-6, Figure 4-8, and Figure 4-9), and saved as matrices for later analysis (files located on 
CD in the analysis\model correlation\output\ directory). 
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5.0 Combining Approaches 

This section discusses the combination of the three approaches towards quantifying both the 
quality of proposed monitoring well locations, and the relative importance of existing steel-cased 
well locations 

5. 1. One Additional Monitoring Location 
Three different approaches to identifying optimal additional monitoring well locations have been 
computed. In the case of the geostatistical estimation variance reduction approach, the change in 
the estimation variance can be computed after adding more wells. However, the results of this 
approach leads to many locations with high propensity to reduce overall estimation variance and 
the results of this approach do not uniquely identify one or even a handful of optimal locations 
for additional wells. To some extent, combining all three of the approaches into a single map 
reduces this non-uniqueness. Here, the three approaches are combined to provide a combined 
score, Sc, that identifies the best locations for new wells. The higher the value of the score is, the 
better that location is for a new well. 

The combined score is the sum of the three different fields calculated in the three monitoring 
approaches scaled appropriately and combined as 

The three components of Sc are the relative change in the average ordinary kriging variance, 

(18) 

d oK, the change in the average triangle interior angle ratio, and the absolute value of the 
correlation coefficient between travel time to the WIPP boundary and either the estimated 
transmissivity or head, rs, each compared relative to the 2007 network. The absolute value of the 
rank correlation coefficient is used since both positive and negative correlations are of equal 
importance for locating new monitoring wells. The triangle interior angle ratio is handled 
differently, because for that metric, negative values are poor places to locate wells. Figure 5-1 
shows histograms of the fields that contribute to Sc. 

Four different combinations of the input fields are considered, requiring six total input fields. 
The resulting fields will be comprised of the following four cases: 

1. !1 mean kriging variance + !1 mean triangle angle ratio + p Kerr, 
2. !1 mean kriging variance + !1 mean triangle angle ratio + p head, 
3. !1 median kriging variance + !1 median triangle angle ratio + p Keff, 
4. !1 median kriging variance+ !1 median triangle angle ratio+ p head; 

either the correlation of travel times to head or Keff are used, and either the mean or median 
relative kriging and triangle metrics are used. 
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Figure 5-1. Histograms of each component of Sc, before applying scaling. 

The three metrics in Sc are already unitless, as reported in their individual previous sections. 
results are rescaled here to give them common ranges (a width of unity). The rescaling is 
accomplished as 

S = u;K -min(u;K) + Ar + lr,l-min(l~,l) 
c max(u;K)- min(u;K) max(AJ- min(AJ max(lr,l)- min(jr,l) 

The 

{19) 

where the max() and mi n () operators define the maximum and minimum values of the 
different components of the combined score across the entire calculation domain. The triangle 
metric is handled differently than the others, as it is not shifted to a zero-based origin (no"
min(Ar)" in the numerator); this was done because the negative values of change with respect to 
the interior angle metric indicate that adding a well at a given location would degrade the quality 
of the overall average well network. 

Histograms ofthe scaled components to Sc are plotted in Figure 5-2. The top row of plots for the 
relative change in the kriging variance are simply scaled to the [0,1] interval (they already had a 
distribution with a minimum value of zero). These distributions are slightly skewed towards 0.0, 
more so for the change in the median kriging variance. In the second row of plots for the relative 
change in the triangle angle ratio are scaled to a unit width interval, but they are not shifted (now 
covering approximately the [-0.6,0.4] interval). These distributions are centrally distributed 
about a non-zero negative value. The absolute value ofthe correlation coefficient distribution 
(bottom row) is now strongly skewed towards 0.0, after taking the absolute value (the original 
distribution in Figure 5-1 was roughly symmetric about 0.0). 
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Figure 5-2. Histograms of each component of Sc, after applying scaling 

Other than the scaling, one additional change is made to the fields for the mean and median 
kriging variance. These fields are computed on a two times coarser grid than the triangle angle 
ratio or the correlation coefficients. The use of this multiplier is to accommodate the long run 
times for the kriging calculations. The fields resulting from the kriging calculation are copied 
onto the finer mesh by copying each of the kriging matrix cell's values (without averaging) into 
the four cells covering the same area in the finer grid. This process is similar to how values were 
copied from the MODFLOW to SECOTP2D modeling grids in the CRA 2009 PABC 
calculations (see Kuhlman, (2010a), Appendix A, §1.7). 

5.1.1. Results 
The theoretical minimum and maximum combined score values for any location in any of the 
four cases are -0.6 and 2.4 respectively. An image map of the combined score value for case 1 is 
shown in Figure 5-3. The resulting field is light colored (low score) in most areas surrounding 
the WIPP L WB and near monitoring wells in the 2007 well network. The resulting image for 
case 2 is shown in Figure 5-4. The resulting distribution ofthe case 2 results has lower low 
values (some negative values, indicated in yellow), and the dark blue location, indicating a good 
possible location, are more localized than for the means of the same variables (Figure 5-3). 
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Figure 5-3. Combined scaled results for case 1, using mean A kriging variance, mean A triangle shape metric, 
and correlation between Keff and log10 particle travel time. Fiberglass-cased wells are green squares, steel
cased wells are red circles; Salado dissolution and Rustler halite margins are dashed lines; WIPP L WB is 

black square. 
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Figure 5-4. Combined scaled results for case 2, using median A kriging variance, median A triangle shape 
metric, and correlation between Kerr and log10 particle travel time. 

The image map showing the results for case 3 is plotted in Figure 5-5. These results are 
smoother than cases 1 and 2, as was the case for the correlation coefficients that these results 
contain. There are more isolated possible locations inside the WIPP L WB in case 3 than in cases 
1 and 2 (blue areas). The image map showing the results for case 4 is plotted in Figure 5-6. 
Similar to the differences observed between cases 1 and 2 (Figure 5-3 and Figure 5-4), case 4 has 
more negative locations (yellow), and the high values outside the WIPP LWB (blue) are more 
localized than the case considering the mean parameters. 
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Figure 5-5. Combined scaled results for case 3, using mean A kriging variance, mean A triangle shape metric, 
and correlation between modeled head and log10 particle travel time. 
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Figure 5-6. Combined scaled results for case 4, using median A kriging variance, median A triangle shape 
metric, and correlation between modeled head and log10 particle travel time. 

The results of cases 3 and 4 indicate there are areas resulting in relatively high Sc scores inside 
the WIPP LWB, specifically in the south-central (north ofH-4b) and east-central portions (east 
of the WIPP site buildings). The results in cases 1 and 2 do not indicate any significant high Sc 
score areas inside the WIPP L WB. This indicates that the methods considered here indicate 
areas inside the WIPP L WB might be useful for head-monitoring locations regarding head, but 
additional T values from testing new wells might not be as necessary. 

The results outside the WIPP L WB are more focused in cases 2 and 4 (Figure 5-4 and Figure 
5-6), where the medians, rather than the means are used. In these cases the two areas with the 
highest Sc scores (dark blue to purple) are north of the WIPP site between SNL-1 and AEC-7, as 
well as south of the WIPP site between the DOE Gnome-Coach site (USGS-4) and SNL-12. 

In cases 1 and 3, the best new locations for wells would be east ofthe WIPP LWB, specifically 
east ofSNL-8 and southeast of AEC-7, and south ofthe WIPP LWB between H-9c and H-10c, 
also north and west ofthe DOE Gnome-Coach site (USGS-4). 
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5. 2. Remove One Steel Well 
The results of the remove-one-well analyses from the previous sections were plotted together in 
Figure 5-7. Symbols are scaled according to numerical rank, small rank number correlating to 
small symbol size. 
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Figure 5-7. Composite plot of steel-cased well rankings from previous sections. Large symbols correspond to 
greater relative importance for each of the three measures. 

Figure 5-7 shows the trend in the kriging variance reduction (filled red circles), where wells 
inside the WIPP L WB typically have a poor rank, and therefore removing them will have little 
impact on the kriging variance averaged across the entire model domain (H-11b4 being a slight 
exception). The results of the triangle gradient estimator maximization process (blue crosses) 
shows the wells indicated as being most valuable are located in the central and south-east portion 
of the domain. Aside from the locations inside the WIPP L WB, the wells with high rank 
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regarding the gradient estimator approach are steel wells that are not very near fiberglass-cased 
wells (H-1 Oc, H-9c, H-12, H-4b, H-5b and AEC-7). The model correlation results are shown as 
green X's, with the distribution of important steel-cased wells being a more scattered about the 
MODFLOW model area. These results do not depend on current well locations, aside from the 
fact that the current wells were used to calibrate the model. ERDA-9 and H-3b2 are in locations 
where head and Keff are correlated to the model predicted travel time to the WIPP L WB, as 
would generally be expected. USGS-4, H-12, WIPP-11 and WIPP-25 also have high ranks 
based on correlation of model results, which are more difficult to explain. The high ranks of 
these locations are likely due to spurious correlation between the data used in the correlation. 

5.2.1. Summary 
Three different approaches to monitoring network optimization were used to identify locations 
where additional wells could improve the network. These three approaches identify: 1) locations 
where additional wells will reduce the uncertainty in predicting head values at locations without 
wells; 2) locations where an additional well will allow for maximum improvement in the ability 
of the existing monitoring well network to identify changes in the magnitude and orientation of 
the hydraulic gradient by maximizing the quality of local gradient estimators that can be created; 
and 3) locations where the performance assessment measure of advective travel time to the WIPP 
boundary is most correlated to the value of head or transmissivity. 

These three approaches to monitoring network design all attempt to optimize the network with 
respect to different objectives. Combining all three of these approaches is done by rescaling 
each of the raw maps of estimation variance, additional local gradient estimators and sensitivity 
to have a range (minimum to maximum) of 1.0 and to be unitless. The final combined score 
maps show the best places to locate additional wells to meet all three objectives when each of the 
three objectives is given equal weight. The higher the combined score is, the better the location 
is for a new well. The final combined maps are similar with some minor, but important 
differences depending on whether or not sensitivity with respect to head or Keff is included in the 
combined score. 

5. 3. Method Combination Run Control 

The Python script combine _plot_ methods. py (Section 8.5) loads in the results of the 
previous three sections, normalizing them to the range 0 :::; x :S 1 and summing them up to create 
composite plots (Figure 5-3 through Figure 5-6) illustrating the optimum location for additional 
monitoring wells. Histograms of each component before (Figure 5-1) and after (Figure 5-2) 
scaling are also made for assessing the relative effect each of the three components has on the 
overall result. 
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6.0 Conclusions 

A set of measurements made in 42 head monitoring wells in the Culebra within and surrounding 
the WIPP from 2007 were used in this analysis. This set of observations mostly coincided with 
the freshwater heads used for steady-state calibration of the CRA 2009 PABC MODFLOW 
model. This head-monitoring network provided the input data for three different approaches to 
optimizing the monitoring well network. Optimization is interpreted broadly here to include 
both the identification of new locations where wells could be added to the network to meet some 
objective and also identification of existing wells that could be removed from the monitoring 
network as they provide redundant information. The three different approaches to monitoring 
network optimization examined here are: 1) geostatistical variance reduction; 2) local gradient 
estimation using combinations of three wells; and 3) sampling-based spatial sensitivity 
coefficients. In short, the gradient has not changed significantly since the 2004 analysis. 

6. 1. Summary of Calculations 

Geostatistical variance reduction is a fairly common optimization approach (e.g., Rouhani, 
(1985)) that exploits several properties of the kriging variance to identify new locations where a 
well could be added to an existing monitoring network to provide the greatest reduction in 
estimation variance. The same approach can be used to determine existing wells that, upon 
removal from the monitoring network, provide the smallest increase in the overall estimation 
variance. Kriging provides an ideal approach to these calculations as the estimation variance 
calculated through kriging is only a function ofthe data configuration and not the data values. 
Therefore, the estimation variance reduction/increase for the addition/removal of a new well can 
be calculated prior to adding/removing that well from the network. This calculation assumes that 
the variogram calculated for the head, or residual, values in the network does not change with the 
addition/removal of a well. 

Application of the geostatistical estimation variance calculations to the Culebra network shows 
that there are many locations where a well can be added to the network that will produce a 
maximum reduction in the average estimation variance. These locations are all outside of the 
WIPP site boundaries and the majority of these locations are near the extremities of the 
MOD FLOW model domain. Adding new wells within the WIPP site boundary will not have a 
significant impact on the estimation variance. The geostatistical estimation variance calculations 
were also applied to the problem of determining which existing wells to remove from the 
network. Results for this problem can easily be calculated; however, for removal of more than 
one well at a time, it is necessary to know what combinations of wells need to be removed to 
make the problem tractable. Four different base cases were run here and the results show that 
simultaneous removal ofWIPP-13 and another steel-cased well makes an insignificant change in 
the estimation variance relative to the full 42-well network, while removal of either of other pairs 
of steel-cased wells has a significant impact (Table 2-5). Averaged across the entire model 
domain, the removal ofwells USGS-4, H-9c, H-10c and AEC-7 would have the largest effect 
(Figure 2-14). Averaged across the WIPP LWB, removal ofwells H-4b, H-5b, H-17 and H-7b1 
would have the largest effect (Figure 2-16). 

A Delaunay triangulation of the wells in the 2007 monitoring network provides a platform for 
estimating the quality of triangles as gradient estimators. The interior angle ratio (max angle I 
min angle) is used as a metric for quantifying the quality of a given arrangement of wells. Local 
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gradient estimators were used to identify the best places to locate additional monitoring wells 
and the existing wells that could be removed from the network with the smallest impact on the 
ability of the network to estimate in the gradient. 

Results of the calculations to identify locations for additional monitoring wells show that new 
wells should be located outside of the WIPP site. Additional monitoring wells could optimally 
be placed north and east of the WIPP L WB, or south between existing wells (Figure 3-1 0). The 
well removal calculations were done by removing one well at a time from each of three base case 
scenarios. Removal of wells in the western portion of the domain, outside the WIPP L WB, has 
little effect on the quality of the network from the point of view of the triangular gradient 
estimators (Table 3-1 and Figure 5-7). The removal of steel-cased wells in the southeast or 
inside the WIPP L WB would have the largest effect on the overall network. 

The third approach to monitoring network optimization explored in this report is that of using 
model correlation to identify locations for new wells where some model output of interest (e.g., 
travel time) is most sensitive to the transmissivity or head at that location. These correlation 
coefficients are calculated through a sampling-based technique across 100 calibrated Keff fields. 
The sampling-based sensitivity coefficients are shown as a map of the sensitivity of the travel 
time from the repository to the WIPP site boundary with respect to head and transmissivity 
(Figure 4-5 and Figure 4-8). The results with respect to head show a smoothly varying 
sensitivity field with large regions of positive and negative correlation between head and travel 
time. The results with respect to Keff have much more localized regions of positive and negative 
correlation with travel time being most sensitive to transmissivity at a location directly south of 
the WIPP site boundary. It is noted that increased knowledge of the spatial variation of the 
Culebra transmissivity is not a goal of the long-term monitoring network, but transmissivity is an 
input to the T field calibration process used as input to further P A calculations. 

As a final step, the results of the geostatistical estimation variance calculations, the local gradient 
estimation and the spatial sensitivity coefficients were combined into two "combined score" 
maps. These maps show, on a normalized scale, the best locations to locate new monitoring 
wells. In general, these areas are outside of the WIPP site. 

6. 2. Reexamination of Monitoring Goals 

The different purposes, goals and factors that must be taken into account in the design of the 
Culebra long-term monitoring network were stated in Section 1.2. These goals come from a 
variety of sources, mainly the state and federal regulatory bodies with WIPP oversight and the 
ability of the network to provide needed inputs to P A models. Practical factors impacting 
network design require that the total number of wells in the monitoring network be minimized 
and that certain wells be retained in the network. The monitoring network should also serve as a 
vehicle to provide new information to the hydrologic and geologic conceptual models. 

The first monitoring network goal is to allow for determination of the direction and rate of 
groundwater flow across the WIPP site. Triangular gradient estimators were developed to meet 
this goal (Section 3.0). Independently obtained head measurements cannot by themselves 
determine the direction and magnitude of the hydraulic gradient. For a confined aquifer with a 
mainly two-dimensional flow pattern, head measurements at three separate locations are 
necessary to determine the orientation and magnitude of the gradient. Small equilateral triangles 
are typically the best for estimating gradients over an area from point head measurements, 

Page 85 of 133 



 

 Information Only 

AP-111 Rev. 1 Monitoring Network Design Optimization 

assuming the observed heads result in a gradient large enough to measure over the ambient noise 
in the system. 

The second monitoring goal is to provide data needed to infer causes of changes in water levels. 
Detecting water level change can be done in a single well and an implicit requirement to meet 
this goal is that there are enough wells in key locations both within and around the WIPP site to 
detect any water level changes. Checking for the adequate distribution of wells in and around 
the WIPP site is accomplished using a geostatistical variance reduction approach (Section 2.0). 
These calculations identify where additional wells are needed and which existing wells can be 
removed from the network. After a change in water level is detected, the cause of that change 
must be inferred. There must be enough wells in the proper configuration to infer the cause of a 
change. The geostatistical variance reduction and three-point estimator approaches to 
monitoring network design provide networks that maintain enough well density with the proper 
configurations to infer causes of changes. 

The third goal is that the monitoring network must provide spatially distributed head data 
adequate to allow both defensible boundary conditions to be inferred for Culebra flow models 
and defensible calibration of those models. This goal is related to the previous one in that a 
network that provides enough wells with the spatial distribution and configuration to detect and 
infer causes of changes in water levels should also provide the data necessary to infer boundary 
conditions and calibrate Culebra flow models. Therefore both the geostatistical variance 
reduction and the gradient estimator approaches and the data gaps and redundancies that they 
identify apply to this goal as well. Additionally, a third approach to monitoring network design 
based on model correlation analysis was developed to explicitly incorporate the results of 
calibrated groundwater flow models directly into the monitoring network design. The set of 
calibrated groundwater models used as the basis of this third approach incorporates the latest 
geologic and hydrologic conceptual models. This approach to monitoring network design 
defines areas along the boundaries and within the groundwater flow model where the model 
results are most sensitive to the calibrated values of head and transmissivity. Regions of high 
sensitivity are targeted for future well locations. 

In addition to meeting these three goals, a number of other factors were considered in the design 
of the monitoring network. These included preserving the locations of existing fiberglass and 
steel-cased wells, identifying wells that provide redundant information, incorporating current 
hydrologic and geologic conceptual models and identifying locations where questions in the 
conceptual models can be addressed and/or locations where the groundwater flow models used in 
PA calculations are correlated to the local values ofhead and transmissivity. Both the 
geostatistically-based variance reduction approach and the three-point estimator approach to 
monitoring network design explicitly considered minimization of the number of wells in the 
monitoring network through removal of existing wells. Tradeoffs between the minimization of 
the wells in the network and the ability of the network to provide information on changes in 
heads were examined. The monitoring network design done here was focused on optimization 
approaches that are readily quantified into different objective functions. Meeting certain, less 
easily quantified, factors such as locations where conceptual model questions can be addressed is 
more difficult and the monitoring networks designed here did not explicitly address this factor. 

The results of the calculations done to meet the monitoring goals and the other factors are 
combined into a series of maps (Figure 5-3 through Figure 5-6) that show the best locations for 
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adding wells to the monitoring network. A map has also been created showing which existing 
steel-cased wells are the most and least important to maintain within the monitoring network 
(Figure 5-7). 
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8.0 Run Control Script Listings 

This appendix lists the source code for the scripts written for and used in this analysis report, and 
documents them to allow their reasonable verification and future use, according to NP 19-1. The 
scripts listed in this section neither model physical phenomena nor solve differential equations 
that model physical phenomena. Rather they are utility codes that process inputs and summarize 
outputs for other modeling codes (i.e., KT3D). The scripts are heavily commented (green text) to 
allow the flow of the execution to be easily followed. 

B. 1. Listing of Files Included on CD 

The following directory listing (Table 8-1) corresponds to the directory tree given after it in 
Figure 8-1. 

El 0 report_CD 

HOIIINIIysis 
D combine_3_methods 

b commorulata 
D rommon_progroms 

H 0 kriging 
B 0 laiging_Ddd_well 

b output 

B D laiging_r"""""'-
D output 

Ei\;;lm<>del_aJtTelalioo 

Obnux 
0 output 

[+] !II model_files.zip 

B 0 triangle_metJic 

D output 

B 0 report 
H Qfigures 

i::)Ol_inlro 

0 02_kriging 
D o3_triangles 
D 04_m<>del_correlabon 
0 05_mmbine_3_methods 

Figure 8-1. Directory Tree of CD 

Table 8-1. CD Directory listing 

C:\report_CD>dir /S /TC 
Volume in drive C is Drivec 
Volume Serial Number is 542A-10F7 

Directory of C:\report_CD 

04/10/2010 
04/10/2010 
04/07/2010 
04/07/2010 

10:50 AM <DIR> 
10:50 AM <DIR> 
12:42 PM <DIR> 
12:42 PM <DIR> 

0 File (s) 

Directory of C:\report_CD\analysis 

04/07/2010 12:42 PM <DIR> 
04/07/2010 12:42 PM <DIR> 
04/07/2010 12:51 PM <DIR> 
04/07/2010 12:44 PM <DIR> 
04/07/2010 12:50 PM <DIR> 
04/07/2010 12:43 PM <DIR> 
04/07/2010 12:43 PM <DIR> 
04/07/2010 12:43 PM <DIR> 

0 File (s) 

analysis 
report 

o bytes 

combine 3 methods 
common data 
common _programs 
kriging 
model correlation 
triangle_metric 

o bytes 

Directory of C:\report_CD\analysis\combine_3_methods 

04/07/2010 12:51 PM <DIR> 
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04/07/2010 
04/11/2010 
04/11/2010 

Monitoring Network Design Optimization 

Table 8-1. CD Directory listing 

12:51 PM <DIR> 
12:10 PM 
04:11 PM 

2 File (s) 

10,136 combine_plot_methods.py 
997 composite_remove_one_steel.dat 

11,133 bytes 

Directory of C:\report_CD\analysis\common_data 

04/07/2010 
04/07/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 

12:44 PM <DIR> 
12:44 PM <DIR> 
01:46PM 1,776 2007 well_data.dat 
01:46PM 1,823 2007_well_data_for_trend.dat 
01:46 PM 1,606 2007 well data for triangles.dat 
01:46 PM 2,210 2007=well=data=with_names.dat 
01:46 PM 379 2007 well names.dat 
01:46 PM 331 2007 well names for_triangles.dat 
01:46 PM 1,694 base data.dat 
01:46 PM 5,415 h2 200711.bln 
01:46 PM 5,799 h3 200711.bln 
01:46 PM 1,395,622 model cells 100 inside totalbdry.dat 
01:46 PM 350,196 model-cells-200-inside-totalbdry.dat 
01:46 PM 156,766 model=cells=300-inside=totalbdry.dat 
01:46 PM 87,626 model cells 400 inside totalbdry.dat 
01:46 PM 56,668 model=cells=500 inside=totalbdry.dat 
01:46 PM 40,040 model_cells_600 inside_totalbdry.dat 
01:46 PM 64 model_domain_specs.dat 
01:46 PM 105 modflow_boundary.bln 
01:46 PM 189 no-flow-area-only.bln 
01:46 PM 8,532 total_boundary.bln 
01:46 PM 105 wipp_boundary.bln 

20 File(s) 2,116,946 bytes 

Directory of C:\report_CD\analysis\common_programs 

04/07/2010 12:50 PM <DIR> 
04/07/2010 12:50 PM <DIR> 
04/07/2010 12:45 PM 157,184 KT3D.EXE 
04/07/2010 12:50 PM 1,807 redwhitemap.m 

2 File (s) 158,991 bytes 

Directory of C:\report_CD\analysis\kriging 

04/07/2010 12:43 PM <DIR> 
04/07/2010 12:43 PM <DIR> 
04/07/2010 12:49 PM <DIR> kriging_add_well 
04/07/2010 12:50 PM <DIR> kriging_remove_steel 

o File (s) o bytes 

Directory of C:\report_CD\analysis\kriging\kriging_add_well 

04/07/2010 12:49 PM <DIR> 
04/07/2010 12:49 PM <DIR> 
04/07/2010 12:52 PM 882 generate_model_cell_masks.m 
04/07/2010 12:44 PM 11,658 krig_plus_one.py 
04/07/2010 12:45 PM 327 kt3d driver.bat 
04/10/2010 01:47 PM <DIR> output 
04/07/2010 12:46 PM 92 shared_data.py 

4 File (s) 12,959 bytes 

Directory of C:\report_CD\analysis\kriging\kriging_add_well\output 

04/10/2010 01:47 PM <DIR> 
04/10/2010 01:47 PM <DIR> 
04/10/2010 01:47 PM 262,416 addone mod results corrcoef.dat 
04/10/2010 01:47 PM 268,008 addone_mod_results_max.dat 
04/10/2010 01:47 PM 263,199 addone_mod_results_mean.dat 
04/10/2010 01:47 PM 263,393 addone_mod_results_median.dat 
04/10/2010 01:47 PM 271,115 addone mod results stdev.dat -
04/10/2010 01:47 PM 262,416 addone wipp results corrcoef.dat 
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04/10/2010 01:47 PM 
04/10/2010 01:47 PM 
04/10/2010 01:47 PM 
04/10/2010 01:47 PM 
04/10/2010 01:47 PM 
04/11/2010 03:43 PM 
04/11/2010 03:42 PM 

13 File (s) 

Monitoring Network Design Optimization 

Table 8-1. CD Directory listing 

267,024 addone wipp results max.dat 
266,686 addone-wipp-results-mean.dat 
262,416 addone=wipp=results=median.dat 
268,976 addone_wipp_results_stdev.dat 

26 base stats.out 
196,812 X.dat 
218,680 Y.dat 

3,071,167 bytes 

Directory of C:\report_CD\analysis\kriging\kriging_remove_steel 

04/07/2010 12:50 PM <DIR> 
04/07/2010 12:50 PM <DIR> 
04/07/2010 12:52 PM 1,696 krig_remove_one_steel.py 
04/07/2010 12:52 PM 2,381 krig_remove_two_steel.py 
04/10/2010 01:47 PM <DIR> output 
04/09/2010 11:58 AM 64,512 remove_one_well_results2 2010.xls 
04/09/2010 11:59 AM 164,352 remove two well results3.xls 

4 File (s) 232,941 bytes 

Directory of C:\report CD\analysis\kriging\kriging_remove_steel\output 

04/10/2010 01:47 PM <DIR> 
04/10/2010 01:47 PM <DIR> 
04/10/2010 01:50 PM 1, 671 model - results_one.dat 
04/10/2010 01:48 PM 4,161 remove two model.csv 
04/10/2010 01:48 PM 4,131 remove_two_wipp.csv 
04/10/2010 01:50 PM 1,604 wipp_results_one.dat 

4 File (s) 11,567 bytes 

Directory of C:\report_CD\analysis\model_correlation 

04/07/2010 12:43 PM <DIR> 
04/07/2010 12:43 PM <DIR> 
04/11/2010 02:02 PM 719 compute_partial_correlations.R 
04/11/2010 01:57 PM 613 export_pcor_inputs.py 
04/11/2010 02:13 PM <DIR> linux 
04/11/2010 01:58 PM 1,975 load_model_data.py 
04/11/2010 11:51 AM 120,751,461 model_files.zip 
04/11/2010 01:58 PM <DIR> output 
04/07/2010 12:55 PM 7,611 spearman_rank_coefficient.py 

5 File (s) 120,762,379 bytes 

Directory of C:\report_CD\analysis\model_correlation\linux 

04/11/2010 02:13 PM 
04/11/2010 02:13 PM 
04/11/2010 11:51 AM 
04/11/2010 11:51 AM 

2 File(s) 

<DIR> 
<DIR> 

2,169 checkout_model_data.sh 
3,714 head bin2ascii.py 

5,883 bytes 

Directory of C:\report_CD\analysis\model_correlation\output 

04/11/2010 01:58 PM <DIR> 
04/11/2010 01:58 PM <DIR> 
04/11/2010 02:52 PM 1,084,380 corr_head_vs_time.dat 
04/11/2010 02:52 PM 1,072,200 corr_keff_vs_time.dat 
04/11/2010 01:58 PM 10,670,500 head trav.dat 
04/11/2010 02:12 PM 171,444 hpc.out 
04/11/2010 03:59 PM 1,126,533 keff mean.out 
04/11/2010 01:58 PM 9,786,982 keff trav.dat 
04/11/2010 03:59 PM 1,046,563 keff var.out 
04/11/2010 02:12 PM 185,720 kpc.out 

8 File (s) 25,144,322 bytes 

Directory of C:\report_CD\analysis\triangle_metric 

04/07/2010 12:43 PM <DIR> 
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Table 8-1. CD Directory listing 

04/07/2010 12:43 PM <DIR> 
04/10/2010 03:52 PM <DIR> output 
04/07/2010 12:53 PM 6,230 triangles_add_one.m 
04/07/2010 12:54 PM 13,051 triangles_remove_one.m 
04/07/2010 12:54 PM 7,735 triangles_remove_two.m 

3 File(s) 27,016 bytes 

Directory of C:\report_CD\analysis\triangle_metric\output 

04/10/2010 
04/10/2010 
04/10/2010 
04/10/2010 

03:52 PM <DIR> 
03:52 PM <DIR> 
03:53 PM 1,395,622 triangles_add_one_mean.dat 
03:53 PM 1,395,622 triangles_add_one_median.dat 

2 File(s) 2,791,244 bytes 

Directory of C:\report_CD\report 

04/07/2010 
04/07/2010 
04/09/2010 

12:42 PM 
12:42 PM 

<DIR> 
<DIR> 

10:38 AM <DIR> 
0 File (s) 

figures 
o bytes 

Directory of C:\report_CD\report\figures 

04/09/2010 10:38 AM <DIR> 
04/09/2010 10:38 AM <DIR> 
04/09/2010 10:39 AM <DIR> 01 intro 
04/09/2010 10:39 AM <DIR> 02_kriging 
04/09/2010 10:39 AM <DIR> 03 triangles 
04/09/2010 10:40 AM <DIR> 04 model correlation - -
04/09/2010 10:40 AM <DIR> 05 combine 3 methods - --

0 File (s) o bytes 

Directory of C:\report_CD\report\figures\01_intro 

04/09/2010 10:39 AM <DIR> 
04/09/2010 10:39 AM <DIR> 
04/09/2010 10:38 AM 

1 File(s) 
13,001 fig01_fiber_vs_steel_well_locations.srf 

13, 001 bytes 

Directory of C:\report_CD\report\figures\02_kriging 

04/09/2010 
04/09/2010 
04/10/2010 
04/09/2010 
04/09/2010 
04/10/2010 
04/09/2010 
04/09/2010 

10:39 
10:39 
01:03 
12:01 
10:53 
11:40 
11:57 
10:53 

6 

AM 
AM 
PM 
PM 
AM 
AM 
AM 
AM 

File (s) 

<DIR> 
<DIR> 

3,798 krig add one_plotting.m 
983,627 may2007_~ariogram_modela.srf 

16,893,066 perturbation_spread_of_variograms.srf 
111,616 piecewise_linear_trend.xls 

15,469 remove_one_steel_well.srf 
28,672 trend_surface remove one results.xls 

18,036,248 bytes 

Directory of C:\report_CD\report\figures\03_triangles 

04/09/2010 10:39 AM 
04/09/2010 10:39 AM 
04/09/2010 10:40 AM 
04/09/2010 10:42 AM 
04/09/2010 10:42 AM 
04/09/2010 12:00 PM 
04/09/2010 10:40 AM 

5 File (s) 

<DIR> 
<DIR> 

2,072 random_points_triangle_explanation.mat 
4,384 three_point_estimator_fig.m 

539,206 three_point_estimator_log10r.tif 
1,150,768 three triangle metrics.fig 
1,317,464 triangulation_explanation.fig 

3, 013, 894 bytes 

Directory of C:\report_CD\report\figures\04_model_correlation 

04/09/2010 10:40 AM 
04/09/2010 10:40 AM 

<DIR> 
<DIR> 
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Table 8-1. CD Directory listing 

Directory of C:\report_CD\report\figures\05_cornbine_3_methods 

04/09/2010 
04/09/2010 

10:40 AM <DIR> 
10:40 AM <DIR> 

o File (s) o bytes 

Total Files Listed: 
81 File(s) 175,409,691 bytes 
65 Dir(s) 147,501,948,928 bytes free 

8.2. Kriging Variance Minimization Scripts 
The following scripts were used in the kriging variance minimization (see Section 2.0). 

8.2.1. R scriptplot_linear_fit_summary.R 
The following R script computes the linear fit surface (Equation 1, in Section 2.1) and the related 
summary statistics given in Figure 2-3 and Table 2-1 using built-in statistical functions. 

4 

# this R script computes the best Fit linear model through the Freshwater 
# head data and plots some summary statistics included as Figures in the 
#analysis report. 

# load in data 
6 wells<- read.table(' .. / .. /common_data/2007_well_data_for_trend.dat') 

row.names(wells) <- read.table(' .. / .. /common_data/2007_well_names.dat')$Vl 
8 names(wells) <- c('x', 'y', 'fwh', 'res', 'casing', 'flag') 

attach(wells) 
10 

#don't select SNL-6 and SNL-15 (they have -999 in res column) 
12 #and don't use redundant H-19 we77s 

mask <- flag == 1 
14 wells.lm <- lm(fwh[mask]-x[mask]+y[mask]) 

summary(wells.lm) 
16 par(mfrow=c(2, 2)) 

p 1 ot (we 11 s . 1 m) 

8.2.2. Python script remove_ one_ variogram _effects. py 

2 

4 

6 

8 

10 

The following Python script computes the best-fit trend surface through the dataset after 
individually removing each steel-cased well. The two outputs from this script are the effects of 
removing a well on the best-fit linear surface (see Figure 2-4) and the resulting smaller-by-one 
datasets used to compute experimental variograms via Surfer in Figure 2-6. 

import numpy as np 
import os 

modeloat = np.loadtxt(r' .. \ .. \common_data\model_domain_specs.dat') 

# use midpoint or model domain For origin or surFace Fitting 
# to improve condition number or matrices in least-squares Fitting 
xmid = (mode1Dat[2,0] + modelDat[l,0])/2.0 
ymid = (mode1Dat[2,1] + modeloat[l,l])/2.0 

fh = open(r' .. \ .. \common_data\2007_well_names.dat', 'r') 
12 names= [line.rstrip() for line in fh] 

fh.close() 
14 

16 

18 

wellDat = np.loadtxt(r' .. \ .. \common_data\2007_well_data_for_trend.dat',dtype=np.float64) 

#data columns: X,Y,FWH,res,casing,rlag 
# FWH :: may 2007 Freshwater head 
#res :: residual computed using R 
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26 

28 

30 

32 

34 

36 
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#casing :: 1=steel, O=fiberglass/pvc 
# flag :: 0= do not use in trend analysis, 2=do not use at all, 
# 1= use in both trend & var1ogram analysis 

fh = open('trend_surface_remove_one_results.csv','w') 
fh.write('well,sum squared error,condition number,rank,RA2,A,B,C,gradient,angle\n') 

trendwells = wel1Dat[welloat[:,5]==1] 
trendNames =[name for (i,name) in enumerate(names) if wel1Dat[i,5]==1] 
ntwells = trendwells.shape[O] 
trendNames.append('base_case') 

#additional wells used in variogram analysis, but not in trend analysis H-19b{2,3,4,5,6,7} 
variowells = wellDat[wellDat[:,5]==0] 
varioNames =[name for (i,name) in enumerate(names) if wel1Dat[i,5]==0] 
nvwells = varioWells.shape[O] 

fori in xrange(ntwells+1): 
38 if i==ntwells or np.abs(trendwells[i ,4] - 1.0) < 0.01: 

40 # make a mask that is all true 
mask= trendwells[:-1,0] > 1.0 

42 

44 

46 

48 

50 

52 

54 

56 

58 

60 

62 

64 

66 

68 

70 

72 

74 

76 

#set the current steel well to false 
if i < ntwe 11 s: 

mask[i] = False 

tX = trendwells[mask,O] - xmid 
tY = trendwells[mask,1] - ymid 
tH = trendwells[mask,2] 

# using numpy recompute linear trend & compute residuals 
# compute statistics about change removing each well has on estimated surface 
# relative change in angle, slope & offset of surface 
#write wells & residuals to file 

trendA = np.concatenate((tX[:,None],tY[:,None],np.ones((tX.shape[0],1))),axis=1) 

x,residues,rank,singulars = np.linalg.lstsq(trendA,tH) 
# residues is "squared Euclidian norm" 

cond = np.max(singulars)/np.min(singulars) 
# coefficient of determination 
rsq = 1.0 - residues/np.sum((tH - np.mean(tH))**2) 
# rsq = 1 - ss_err / ss_tot 

# write summary of fit as a line in file 
fh.write(','.join(str(z) for z in (trendNames[i],residues[O],cond,rank,rsq[O])) +', ') 
fh.write('%.7e,%. 7e,' % tuple(x[0:2])) #A and B 
fh.write('%.7e,'% (x[2]- x[O]*xmid- x[1]*~mid,)) # c corrected to original coords 
fh.write(','.join(str(z) for z in (np.sqrt(xL0]**2 + x[1]**2), 

np.arctan2(x[1],x[O])/np.pi*180.0))+'\n') 

tHpred = np.dot(trendA,x) 
outdata = np.concatenate((trendwells[mask,0:2], 

tHpred[:,None],(tHpred-tH)[:,None]),axis=1) 

#write all trend data to separate file for variogram analysis in Surfer 
78 np.savetxt('trend_results_'+trendNames[i]+' .dat',outdata,fmt='%.2f') 

so fh.close() 

8.2.3. Python script krig_plus_one.py 

The following Python script drives the GSLIB kriging program kt3d. exe during the kriging 
variance minimization process for adding one well (where it is called as a program). The script 
is also imported as a library in the remove-one and remove-two kriging variance reduction 
scripts. This script imports shared_ data. py (line 8) to act as a container for storing shared 
variables, and uses the MS-DOS batch script kt3d_dri ver. bat (line 70) to manage directories 
and executables related to kt3d execution. 

import os 
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2 

4 

6 

import threading 
from time import sleep 
import numpy as np 
from scipy.stats import 
from math import ceil 

rankdata 

a import shared_data as sh 

10 # this script is part of AP-111 
# this python script adds an observation point at points 

12 # in the model domain, each time calling KT3D.exe to krig the 
#current network along with this additional observation. 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

40 

42 

44 

46 

48 

50 

52 

54 

56 

# the kriging variance is read in and some statistics are saved 
# for comparison and plotting. 

def krig(ii,jj,xx,yy,nxx,nyy,xOO,yOO,dxx,dyy,base=False,addone=True): 
""" write KT3D 1nput file, call kt3d.exe, 
and read in results for summarizing in global array.""" 

#write kt3d parameter file 
d = '%03d_%03d'% (ii,jj) 
os.popen('mkdir ' +d) 
fname = os.path.join(d, 'KT3D.PAR') 
fpar = open(fname, 'w') 

fpar.write("""Parameters 
data.dat 

for KT3D\n*******************\n\nSTART OF PARAMETERS: 
\\file with data 

1 2 0 4 0 
-l.Oe21 l.Oe21 
0 
xvk.dat 
1 2 0 3 
0 
kt3d.dbg 
kriged.out 

0 

%(nxx)d %(xOO)g %(dxx)g 
%(nyy)d %(y00)g %(dyy)g 
1 0.5 1.0 
1 1 1 
0 44 
44 
40000.0 40000.0 1.0 
90.0 0.0 0.0 
1 0.0 
0 0 0 0 0 0 0 0 0 
0 
extdrift.dat 
1 
1 3.0 
3 40.0 90.0 0.0 0.0 

7500.0 7500.0 10.0 
fpar.close() 

\\ columns for x, Y, z, var, sec var 
\\ trimming limits 
\\option: O=~rid, 1=cross, 2=jackknife 
\\file with Jackknife data 
\\ columns for X,Y,Z,vr and sec var 
\\debugging level: 0,1,2,3 
\\file for debu~ging output 

\\file for kr1ged output 
\\nx,xmn,xsiz 
\\ny,ymn,ysiz 

\\nz,zmn,zsiz 
\\x,y and z block discretization 
\\min, max data for kriging 
\\max per octant (0-> not used) 
\\maximum search radii 
\\angles for search ellipsoid 
\\0=SK,1=0K,2=non-st SK,3=exdrift 
\\drift: x,y,z,xx,yy,zz,xy,xz,zy 
\\0, variable; 1, estimate trend 
\\gridded file with drift/mean 
\\ column number in gridded file 
\\nst, nugget effect 

\\it,cc,ang1,ang2,ang3 
\\a_hmax, a_hmin, a_vert\n"""% vars()) 

58 

#write data back to file, adding new point to end 
finput = open(os.path.join(d, 'data.dat'), 'w') 
finput.write('data for kriging data + 1 new well \n5 \nX \nY \nfwh \nres \ncasing \n') 
finput.write(sh.data) 
if base == False and addone == True: 60 

62 

64 

#add one data point (S columns, tab delimited) 
finput.write('%8.1f\t%9.1f\t 100.00 \t1.00\t0 ' % (xx,yy)) 

fi nput. close() 

# run KT3D via MS-DOS batch script 
66 output = os.popen('kt3d_driver.bat ' + d) 

for line in output: 
68 pass 

failure = output.close() 
70 if failure: 

print'*** KT3D failed ***',ii,jj 
72 else: 

74 

76 

78 

print '(%03i,%03i) '% (ii,jj), 

##read in and calculate summary statistics on kriging variance 
# output from kt3d is a vector, reshape it into a matrix 
var = np.reshape(np.loadtxt(os.path.join(d, 'kriged.out'), 

skiprows=4,usecols=(1,)),(nyy,nxx)) 

if base == True: 80 

82 
sh.base_case_mod = (var[mod_m[O]:mod_m[1], mod_n[O]:mod_n[1]]) 
sh.base_case_wipp = (var[wipp_m[O]:wipp_m[1], wipp_n[O]:wipp_n[1]]) 
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# write base case kriging variance as a matrix for contouring 
np.savetxt('kriged_base_case_var_img.dat',sh.base_case_mod,fmt='%.3f') 

var_mod = var[mod_m[O]:mod_m[1], mod_n[O]:mod_n[1]] 
88 var_wipp = var[wipp_m[O]:wipp_m[1], wipp_n[O]:wipp_n[1]] 

90 #use lock when writing to global variable to prevent thread collisions 
with threading.Lock(): 

92 # compute statistics for sub-block corresponding to model domain, 
#masked by the cells which are inside the area of interest 

94 

96 

98 

100 

102 

104 

106 

108 

110 

112 

114 

116 

118 

120 

122 

124 

126 

128 

130 

132 

# change in aoi-wide standard deviation 
sh.mod_results[ii,jj,O] = (sh.base_case_mod[aoimask].std()

var_mod[aoimask].std())/ 
sh.base_case_mod[aoimask].std() 

# change in aoi-wide average 
sh.mod_results[ii,jj,1] = (np.average(sh.base_case_mod[aoimask]) -

np.average(var_mod[aoimask]))/ 
np.average(sh.base_case_mod[aoimask]) 

# change in aoi-wide median 
sh.mod_results[ii,jj,2] = (np.median(sh.base_case_mod[aoimask]) -

np.median(var_mod[aoimask]))/ 
np.median(sh.base_case_mod[aoimask]) 

# correlation coefficient between cases 
sh.mod_results[ii,jj,3] = 1.0- np.corrcoef(sh.base_case_mod[aoimask].flatten(), 

var_mod[aoimask].flatten())[0,1] 

# change in max variance 
sh.mod_results[ii,jj,4] = (sh.base_case_mod[aoimask].max() -

var_mod[aoimask].max()) 

# same statistics for land-withdraw? boundary sub-block 
sh.wipp_results[ii,jj,O] = (sh.base_case_wipp[wippmask].std() -

var_wipp[wippmaskj.std())/ 
sh.base_case_wipp[wippmask].std() 

sh.wipp_results[ii,jj,1] (np.average(sh.base_case_wipp[wippmask])-
np.average(var_wipp[wippmask]))/ 
np.average(sh.base_case_wipp[wippmask]) 

sh.wipp_results[ii,jj,2] (np.median(sh.base_case_wipp[wippmaskJ)
np.median(var_wipp[wippmask]))/ 
np.median(sh.base_case_wipp[wigpmask]) 

sh.wipp_results[ii,jj,3] 1.0- np.corrcoef(sh.base_case_wipp[wippmask].flatten(), 
var_wipp[wippmask].flatten())[0,1] 

sh.wipp_results[ii,jj,4] (sh.base_case_wipp[wippmaskj.max()
var_wipp[wippmask].max()) 

################################################## 
134 # common stuff that is useful for adding or removing wells from the network 

# included below, imported elsewhere. 
136 

138 

140 

142 

144 

146 

148 

150 

# coordinates of wipp land-withdraw? boundary (McKenna 2004) AP-111, p 13 
# averaged to be a N-5 square for simple array addressing (it is nearly square anyway) 
fh = open(r' .. \common_data\wipp_boundary.dat'J 
wipp_file = [l.rstrip() for 1 in fh] 
fh.close() 
coords = [] 

#corners listed in file in order :NE,SE,SW,NW,NE (NE repeated to close loop) 
for line in wipp_file[:-1]: 

coords.append([float(z) for z in line.split()]) 

wipp_x = ((coords[2][0] + coords[1][0])/2.0, (coords[O][O] + coords[3][0])/2.0) 
wipp_y = ((coords[2][1] + coords[3][1])/2.0, (coords[0][1] + coords[1][1])/2.0) 

#output grid (the model domain) specifications, number of elements reduced by 
152 #a multiplier to make the run-time feasible 

mult = 4.0 
1~ fh = open(r' .. \common_data\model_domain_specs.dat') 

moddata = [l.rstrip() for 1 in fh] 
156 fh.close() 

158 

160 

162 

#always rounds up when determining number of elements 
nx,ny = [int(ceil(float(z)/mult)) for z in moddata[O].split()] 
xO,yO = [float(z) for z in moddata[1].split()] 
x1,y1 = [float(z) for z in moddata[2].split()] 
dx,dy [float(z)*mult for z in moddata[3].split()] 
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164 

166 

168 

170 

# make vectors 
x = np.array([xO + i*dx for i in range(nx)]) 
y = np.array([yO + i*dy for i in range(ny)]) 

# check that everything adds up correctly to fill the domain 
assert abs(x[-1] - x1) < dx, abs(y[-1] - y1) < dy 

#saved from matlab, this array has 1.00£+0 for cells inside area of interest and 
172 # 0.00£+0 for cells outside 

size = mult*100 
1~ intmask = np.loadtxt(r' .. \common_data\model_cells_%(size)d_inside_totalbdry.dat'% vars()) 

aoimask = intmask > 0.99 
176 

178 
print 'model domain',intmask.sum(), 'true out of',np.size(intmask) 

# make outerproduct matricies for Matlab plotting 
100 X= np.outer(np.ones(ny),x) 

Y = np.outer(y,np.ones(nx)) 
182 

184 

186 

188 

190 

192 

194 

196 

198 

200 

202 

204 

# indicies for this grid corresponding to the wipp lwb 
wipp_n = (int((wipp_x[O] - xO)/dx), int((wipp_x[1J - xO)/dx)) 
wipp_m = (int((wipp_y[O] - yO)/dy), int((wipp_~[1] - yO)/dy)) 
sh.base_case_wipp = np.zeros((wipp_m[1]-wipp_mLO], wipp_n[1]-wipp_n[O])) 

wippmask = aoimask[wipp_m[O]:wipp_m[1], wipp_n[O]:wipp_n[1]] 
wippcheck = np.zeros(np.shape(wippmask)) 
wippcheck[wippmask] = 1.0 
print 'WIPP boundary',wippcheck.sum(), 'true out of',np.size(wippmask) 

# indicies corresponding to the model domain 
mod_n = (int((xO- xO)/dx), int((xO- xO)/dx) + nx) 
mod_m = (int((yO- yO)/dy), int((yO- yO)/d~) + ny) 
sh.base_case_mod = np.zeros((mod_m[1]-mod_mL0], mod_n[1]-mod_n[O])) 

format = '%. 5e' 

# read observed data as one long string 
fh = open(r' .. \common_data\2007_well_data.dat', 'r') 
sh.data = fh.read().strip() #strip off ending/ beginning whitespace 
fh.close() 

#make sure data file ends in a newline 
206 if sh.data[-1] != '\n': 

208 

210 

212 

214 

216 

218 

220 

222 

sh.data = sh.data + '\n' 

# ################################################## 
#only run from here below if called as a program (rather than 
# imported as a library) 

if __ name __ == ' __ main __ ': 

#global arrays to write results into 
sh.mod_results = np.ones((ny,nx,5)) 
sh.wipp_results = np.ones((ny,nx,5)) 

krig(O,O,O.O,O.O,nx,ny,xO,yO,dx,dy,base=True) 
f = open('base_stats.out','w') 
#mean, median, std dev 

224 
f.write(' '.join([str(x) for x in (sh.mod_results[0,0,1],sh.mod_results[0,0,2], 

sh.mod_results[O,O,O], '\n')])) 
f.write(' '.join([str(x) for x in (sh.wipp_results[0,0,1],sh.wipp_results[0,0,2], 

226 

228 

230 

232 

234 

236 

238 

240 

242 

f.close() 
sh.wipp_results[O,O,O], '\n')])) 

for j in xrange(nx): 
print ' ' 
fori in xrange(ny): 

#don't do calculation if point is outside area of interest 
if aoimask[i,j] ==True: 

while True: 
# limit the number of threads (8 processors) 
if threading.activecount() <= 8: 

threading.Thread(target=krig, 
args=(i,j,X[i,j],Y[i,j],nx,ny, 

break 
else: 

sleep(0.015) 

xO,yO,dx,dy,False)).start() 

244 #wait for all the worker threads to finish before writing output 
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while True: 
246 if threading.activecount() > 1: 

sl eep(l. 0) 
248 else: 

250 

252 

254 

break 

# write output in Matlab-friendly matrix format 
names= ['stdev', 'mean','median','corrcoef', 'max'] 

256 

for i,name in enumerate(names): 
print 'writing', name,i 
np.savetxt('addone_mod_results_' +name+ '.dat', sh.mod_results[:,:,i],fmt=format) 
np.savetxt('addone_wipp_results_' +name+ '.dat', sh.wipp_results[:,:,i],fmt=format) 

258 
np.savetxt('x.dat',x,fmt='%.1f') 

260 np.savetxt('Y.dat' ,Y,fmt='%.1f') 

8.2.4. Python script shared data .py 

The following short Python script is used to allow data to be saved and shared in a common 
module (see line 8 ofkrig_plus_one .py, line 7 ofkrig_remove_one_steel.py). 

2 

4 

""" this is just for putting global data in, so 
it can be seen between modules""" 

pass 

8.2.5. MS-DOS batch script kt3d_driver.bat 
The following MS-DOS batch script is called by the Python scripts (see line 70 of 
krig_plus_ one. py) that drive kt3d, and is actually responsible for calling kt3d. exe, first 
creating a temporary directory and copying the executable and input files into that directory. 
This allows the scripts to be threaded and have more than one copy ofkt3d running at a time. 

echo off 
2 rem kriging plus one driver script 

rem this batch file copies the executable into a working directory 
4 rem runs it (it expects a standard input filename KT3D.PAR) 

rem and deletes the executable 
6 copy /B /Y KT3D.EXE %1 

copy /A /Y response %1 
8 chdi r %1 

KT3D.EXE < response 
10 del /F KT3D.EXE response 

chdi r .. \ 

8.2.6. MATLAB scriptgenerate_model_cell_masks.m 
The following MA TLAB script generates ASCII matrix files representing the model grid, 
indicating whether each cell is inside or outside the active MODFLOW region (relying on the 
MATLAB built-in command inpolygon () to do most of the work). The text files generated by 
this script are read in by krig_plus _ one.py (line 176 of Section 8.2.1 ). 

%this Matlab script exports arrays representing whether a cell 
2 % from the model grid is inside or outside the area of interest 

% for use in python scripts 
4 

clear 
6 totalbdry =load(' .. \common_data\total_boundary.dat'); 

8 %model grid (for lOOxlOO elements - the base size) 
grid= load(' .. \common_data\model_domain_specs.dat'); 

10 nx=grid(1,1); ny=grid(1,2); 
xmin = grid(2,1); ymin = grid(2,2); 
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12 xmax = !iJrid(3,1); ymax = !iJrid(3,2); 
dx = grld(4,1); dy = grld(4,2); 

14 clear grid; 

16 for mult = 1:6 
[X,Y] = meshgrid(xmin:mult*dx:xmax, ymin:mult*dy:ymax); 

18 %create logical mask 
INSIDE= inpolygon(X,Y,totalbdry(:,1),totalbdr~(:,2)); 

20 % convert to rea 1 to save (Mat lab can't write logica 1 values to ASCII) 
inside = +INSIDE; 

22 filename= [ 1 model_cells_ 1 ,sprintf('%d',100*mult), '_inside_totalbdry.dat 1
]; 

save( 1 -ASCII 1 ,filename, 1 inside') 
24 end 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

8.2.7. Python script krig remove one steel.py - - -
The following Python script imports the main krig () routine from krig_plus_one .py (see 
Section 8.2.1 ), but instead of adding more locations andre-kriging, a single steel-cased well is 
removed from the existing dataset and the remaining set is re-kriged. 

import sys 
import numpy as np 

#most or the functionality is defined in krig_plus_one; import to re-use code 
sys.path.append(r' .. \kriging_add_well') 
import krig_plus_one as k 
import shared_data as shared 

# this python script removes an observation point, each time calling 
# KT3D.exe to krig the remaining network 

fh = open(r' .. \common_data\2007_well_names.dat', 1 r 1
) 

names= [line.rstrip() for line in fh] 
fh.close() 

# fifth column is casing type (l=steel, O=fiberqlass) 
fh = open(r 1 

•• \common_data\2007_well_data.dat', r') 
wells= [line.rstrip().split() for line in fh] 
fh.close() 

shared.mod_results = np.zeros((len(wells)+1,1,5)) 
shared.wipp_results = np.zeros((len(wells)+1,1,5)) 

# base case, ror computing percentage change 
shared.data = '\n 1 .join( 1 \t'.join(w) for win wells) 
print 1 base_case 1

, 

k.krig(len(wells),O,O.O,O.O,k.knx,k.kny,k.kxO,k.kyO,k.dx,k.dy,base=True,addone=False) 

fm = open('model_results_one.dat 1
, 'w') 

30 fw = open('wipp_results_one.dat 1
, 'w 1

) 

~ stnames = [] 

~ # remove one steel cased well 
for i,well in enumerate(wells): 

E if int(well[4]) == 1: 

38 

40 

42 

stnames.append(names[i]) 

#make a copy and delete current we77 from copy 
cwells = list(wells) 
del cwells[i] 
shared.data = 1 \n'.join('\t 1 .join(w) for win cwells) 

44 

46 

print names[i], 
k.kri!iJ(i,O,O.O,O.O,k.knx,k.kny,k.kxO,k.kyO,k.dx,k.dy,base=False,addone=False) 
fm.wr1te( 1 

I '.join([str(x) for x in shared.mod_results[i,O,:]])) 
fm.write( 1

, '+ names[i] + 1 \n 1
) 

48 

50 

fw.write( 1 
I '.join([str(x) for x in shared.wipp_results[i,O,:]])) 

fw.write( 1
, '+ names[i] + 1 \n 1

) 

fw.close() 
52 fm.close() 
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8.2.8. Python script krig remove two steel.py 
- - -

The following Python script is analogous to that in Section 8.2.6, except a list of most-likely-to
be-removed steel-cased wells are first removed before removing a second steel-cased wells and 
re-kriging the results. The main functionality of this routine is imported from the Python script 
krig_plus_one. py (see Section 8.2.1). 

2 
import sys 
import numpy as np 

4 #most of the functionality is defined in krig_plus_one; import to re-use code 
sys.path.append(r' .. \kriging_add_well') 
import krig_plus_one as k 6 
import shared_data as shared 

8 
# this python script removes an observation point, each time calling 

10 # KT3D. exe to krig the remaining network 

12 fh = open(r' .. \common_data\2007_well_names.dat', 'r') 
names= [line.rstrip() for line in fh] 

14 fh.close() 

16 # fourth column is casing type (l=steel, O=fiberglass) 
fh = open(r' .. \common_data\2007_well_data.dat', 'r') 

18 wells= [line.rstrip().split() for line in fh] 
fh.close() 

20 
#perform the "remove one we77" analysis for the networks modulo the 

22 # fo77owing "likely to not be replaced" we77s 
firstWell = ['WIPP-25','WIPP-13','H-12', 'H-7bl'] 

24 

26 
shared.mod_results = np.zeros((len(wells)+1,1,5)) 
shared.wipp_results = np.zeros((len(wells)+1,1,5)) 

28 #same base-case used throu~hout to allow comparison 

30 

32 

shared.data = '\n'.join('\t .join(w) for win wells) 
print 'base case', 
k.krig(len(wells),O,O.O,O.O,k.knx,k.kny,k.kxO,k.kyO,k.dx,k.dy,base=True,addone=False) 

fm = open('model_results_two.dat','w') 
34 fw = open('wipp_results_two.dat', 'w') 

36 stnames = [] 

38 # remove one of the first steel cased we77s 
for first in firstwell: 

40 # find index in list 
ifirst = names.index(first) 

42 

44 

46 

48 

50 

52 

54 

56 

58 

60 

62 

#make a local copy of we77 list 
cwells = list(wells) 

# remove first steel we77 
del cwells[ifirst] 

#cycle through remaining steel wells 
for i,well in enumerate(wells): 

if int(well[4]) == 1: 
if ifi rst ! = i : 

stnames.append(names[i]) 

#make another copy of list, removing second well 
ccwells = list(cwells) 
del ccwells[i] 

# collapse back into string 
shared.data = '\n'.join('\t'.join(w) for win ccwells) 

64 

66 

print names[ifirst],names[i], 
k.kri~(i,O,O.O,O.O,k.knx,k.kny,k.kxO,k.kyO,k.dx,k.dy,base=False,addone=False) 
fm.wr1te(', '.join([str(x) for x in shared.mod_results[i,O,:]])+',') 
fm.write(', '.join((names[ifirst] ,names[i])) + '\n') 
fw.write(', '.join([str(x) for x in shared.wipp_results[i ,0, :]])+', ') 
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68 fw.write(', '.join((names[ifirst] ,names[i])) + '\n') 

70 fw.close() 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

fm.close() 

8.3. Triangle Metric Maximization Scripts 

The following scripts were used in the local gradient estimation or triangle metric maximization 
portion of the analysis (see Section 3.0). 

8.3.1. MATLAB script triangles_add_one.m 
The following MATLAB script computes and plots figures related to the triangle interior angle 
ratio metric. Each location in the model domain is added to the current network and the statistics 
are re-computed. 

clear 
%this Matlab script asses the benefit of adding a new well, where 
%locations on the MODFLOW modelJ'rid are used as potential locations. 
% This approach is geometry-base only; 

%the ratio min(angle)/max(angle) is used as a metric for the "quality" or 
%a triangle. More equilateral (ratio=l) triangles would be better. 

addpath ' .. \common_programs\' 
wells= load(' .. \common_data\2007_well_data_for_trian9les.dat'); 
margin= load(' .. \common_data\composite_23_margin.dat ); 
noflow = load(' .. \common_data\no_flow_boundary.dat'); 
totalbdry = load(' .. \common_data\total_boundary.dat'); 
WIPP = load(' .. \common_data\wipp_boundary.dat'); 

%default qhull options, except QbB, which scales domain to unit box (since 
% u~ coordinates are numerically large and can lead to significant 
%roundoff error) 
triopts = {'Qt','QbB', 'Qc', 'Qz'}; 

xt=well s(:, 1); 
22 yt=we ll s (: , 2) ; 

nw = size(xt,1); 
24 

26 

28 

30 

32 

34 

36 

38 

%model grid 
grid= load(' .. \common_data\model_domain_specs.dat'); 
nx = grid(1,1); ny = grid(1,2); 
xmin = ~rid(2,1); ymin = ~rid(2,2); 
dx = grld(4,1); dy = grld(4,2); 
clear grid; 

[X,Y] = meshgrid(linspace(xmin,xmin+nx*dx,nx), 
linspace(ymin,ymin+ny*dy,ny)); 

D = numel(X); 

INSIDE= reshape(inpolygon(X,Y,totalbdry(:,1),totalbdry(:,2)),D,1); 
INSIDE(D+1) = 1; 

%observation points in a long x,y vector 
40 z(1:D,1:2) = [reshape(X,D,1),reshape(Y,D,1)]; 

~ Q = zeros(D,S); 
numt = zeros(D,1); 

44 
for jj=1:D+1 

46 
%only points between no-flow and h2/h3 halite boundaries are 

~ %candidate sites, skip the others 
if INSIDE(jj) 

50 

52 

54 

56 

58 

if jj==D+1 
x=xt; 
y=yt; 

else 
X= [xt; Z(jj,1)]; 
y = [yt; Z(]J,2)]; 

end 
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60 
tri = delaunay(x,y,triopts); 

nt = size(tri,1); 
62 geom = zeros(size(tri,1),7); %3 sides, 3 angles, area, # pts inside 

64 

66 

68 

70 

72 

74 

76 

78 

80 

82 

%calculate geometric things related to triangles 
% lengths from Pythagorean theorem 
% angles from cosine law 
%area from Matlab built-in rcn 

% length or side a (2->3) 
geom(1:nt,1) = sqrt((x(tri(:,3))- x(tri(:,2))).A2 + 

(y(tri(:,3))- y(tri(:,2))).A2); 
% length or side b (3->1) 
geom(1:nt,2) = sqrt((x(tri(:,1))- x(tri(:,3))).A2 + 

(y(tri(:,1))- y(tri(:,3))).A2); 
% length or side c (1->2) 
geom(1:nt,3) = sqrt((x(tri(:,2)) - x(tri(:,1))).A2 + 

(y(tri(:,2)) - y(tri(:,1))).A2); 

%angle 1 between sides b & c in radians 
geom(1:nt,4) = acos((sum(geom(:,2:3).A2,2)- geom(:,1).A2)./ ... 

(2.0*prod(geom(:,2:3),2))); 

84 

%angle 2 between sides a & c in radians 
geom(1:nt,5) = acos((sum(geom(:,1:2:3).A2,2)- geom(:,2).A2)./ ... 

(2.0*prod(geom(:,1:2:3),2))); 
%angle 3 between sides b & a in radians 

86 

88 

90 

92 

94 

96 

98 

100 

102 

104 

geom(1:nt,6) = acos((sum(geom(:,1:2).A2,2)- geom(:,3).A2)./ 
(2.0*prod(geom(:,1:2),2))); 

%area or triangle - use MATLAB built-in function 
geom(1:nt,7) = polyarea(x(tri(:,1:3)),y(tri(:,1:3)),2); 

% compute triangle comparison criterias 
ang_ratio = min(geom(:,4:6),[],2)./max(geom(:,4:6),[],2); 

% area-weighted angle ratio 
Q(jj,1) = sum(ang_ratio(:).*geom(:,7))/(nt*sum(geom(1:nt,7))); 

% non-weighted angle ratio average 
Q(jj,2) = sum(ang_ratio(:))/nt; 

%area-weighted angle ratio median 
Q(jj,3) = median(ang_ratio(:).*geom(:,7))/sum(geom(1:nt,7)); 
numt(jj) = nt; 

%mean triangle area 
100 Q(jj,4) = sum(geom(:,7))/nt; 

108 %median triangle area 
Q(jj,S) = median(geom(:,7)); 

110 end 
end 

112 
%reset values outside area or interest to not-a-number 

114 %so they are not plotted. 

116 %save results ror use in final 3-way combination or results 
out= reshape(squeeze((Q(1:end-1,1)-Q(D+1,1))./Q(D+1,1)),ny,nx); 

118 out(-INSIDE(1:end-1)) = -999; 
save('triangles_add_one_mean.dat', 'out', '-ASCII'); 

120 out= reshape(squeeze((Q(1:end-1,3)-Q(D+1,3))./Q(D+1,3)),ny,nx); 
out(-INSIDE(1:end-1)) = -999; 

122 save('triangles_add_one_median.dat', 'out', '-ASCII'); 
clear out; 

124 

126 

128 

130 

132 

134 

136 

138 

Q(-INSIDE(1:end-1),1:end) =NaN; 
numt(-INSIDE(1:end-1)) = NaN; 

scrnsz = get(O, 'screensize'); 

%%plot results 
fi!;Jure() 
cell(max(numt)-min(numt)) 
contourf(X,Y,reshape(numt(1:D),ny,nx),3); 
colorbar; 
daspect([1,1,1]); 
hold on 
tri = delaunay(xt,yt,triopts); 
triplot(tri,xt 1yt, 'g', 'Linewidth',O.S); 
plot(xt,yt, 'or , 'Linewidth',2) 
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148 

150 

152 

154 

156 

158 

160 

162 

164 

166 

168 

170 

172 

174 

176 

178 

180 

182 
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plot(margin(:,1),margin(:,2), '-m', 'Linewidth',2) 
plot(noflow(:,1),noflow(:,2), '--k','Linewidth',2) 
plot(WIPP(:,1),WIPP(:,2),'-k','LineWidth',1.5) 
xlabel('NAD27 UTM x zone 13 [m]', 'FontSize',14) 
ylabel('NAD27 UTM y zone 13 [m]', 'Fontsize',14) 
title('Total number of triangles in network') 
%measured from inside or figure window (no borders or toolbars included) 
%position -> [lert, bottom, width, height] 
set(gcf, 'Position', [10,50,(scrnsz(4)-120)*0.95,scrnsz(4)-120]) 
%make rile printed at screen size, rather than bad default 
set(gcf, 'PaperPositionMode', 'auto'); 
print('-dmeta', 'triangles_addl_total_number.emf') 

type2 = {'scaled_mean_angle', 'unscaled_mean_an~le','median_angle', 'mean_area', 'median_area'}; 
cblab ={'%\Delta area-weighted mean angle rat1o', ... 

'%\Delta mean an~le ratio', ... 
'%\Delta area-we1ghted median angle ratio', ... 
'%\Delta mean triangle area', '%\Delta median triangle area'}; 

txt = { I a I I I I I I b I I I I I I 1 I I 1 } ; 

white = 0.0; 
for ii=1: 5 

elf; 
data = squeeze((Q(1:D,ii) - Q(D+1,ii))./Q(D+1,ii)); 
contourf(X,Y,reshape(data,ny,nx),20); 
colormap(redwhitemap(data,white)); 
cb = colorbar; 
set(get(cb, 'ylabel'), 'string',cblab{ii}, 'Fontsize',14); 
daspect([1,1,1]); 
hold on 
tri = delaunay(xt,yt,triopts); 
triplot(tri,xt,yt, 'g', 'Linewidth',2) 
plot(xt,yt, 'or', 'Linewidth',2) 
plot(margin(:,1),margin(:,2), '-m', 'Linewidth',2) 
plot(noflow(:,1),noflow(:,2), '--k','Linewidth',2) 
plot(WIPP(:,1),WIPP(:,2), '-k', 'LineWidth',1.5) 
xlabel('NAD27 UTM x zone 13 [m]', 'Fontsize',14) 
ylabel('NAD27 UTM Y zone 13 [m]', 'Fontsize',14) 
set(gcf, 'Position',[10,50,(scrnsz(4)-120)*0.85,scrnsz(4)-120]) 
set(gcf, 'PaperPositionMode', 'auto'); 
text(6.05E5,3.594E6,txt{ii}, 'Fontsize',24, 'Fontweight', 'bold'); 
brighten(O.S); 
print('-dmeta', ['triangles_addl_',type2{ii}, '.emf']) 

end 

8.3.2. MA TLAB function redwhi temap. m 
The following MATLAB script is a function for computing the red-white-blue color maps used 
in the plotting of figures in this section; see line 161 of triangles_add_ one. min section 
8.3.1. 

function [ map ] = redwhitemap( data, white ) 
%REDWHITEMAP create a specific color map from 
%blue = min to red=max with wite at a specific number 

mindata = min(min(data)); 
6 maxdata = max(max(data)); 

8 n levels = 64; 

10 map= zeros(nlevels,3); 

12 if mi ndata >= white 
% ** all data will be colored red (no blue or white) 

14 
mindata = white; 

16 
% compute color at midpoint or each bin, rather than at max or min 

18 xn = mindata + (0.5:1.0:(nlevels-O.S))*(maxdata - mindata)/nlevels; 

20 

22 

24 

% white -> red 
map(xn >= white,1) = 1; %red 
map(xn >= white,2) = (maxdata - xn(xn >= white))/(maxdata -white); 
map(xn >= white,3) = map(xn >= white,2); %blue 

26 elseif maxdata <= white 

% green 
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%**all data will be colored blue (no red or white) 
28 

maxdata = white; 
30 

% compute color at midpoint of each bin, rather than at max or min 
32 xn = mindata + (0.5:1.0:(nlevels-O.S))*(maxdata - mindata)/nlevels; 

34 %blue -> white 
map(xn < white,1) = (xn(xn <white) - mindata)/(white- mindata); %red channel 

36 map(xn < white, 2) = map(xn < white, 1); % green 
map(xn < white,3) = 1; %blue 

38 
else 

40 % ** data will be blue, red, and white 

42 % compute color at midpoint of each bin, rather than at max or min 
xn = mindata + (0.5:1.0:(nlevels-0.5))*(maxdata- mindata)/nlevels; 

44 

46 

48 

50 

52 

54 
end 

%blue -> white 
map(xn < white,1) = (xn(xn <white) - mindata)/(white- mindata); %red channel 
map(xn < white,2) = map(xn < white,1); %green 
map(xn < white,3) = 1; %blue 

%white -> red 
map(xn >= white,1) = 1; %red 
map(xn >= white,2) = (maxdata- xn(xn >= white))/(maxdata- white); %green 
map(xn >= white,3) = map(xn >= white,2); %blue 

56 end 

8.3.3. MATLAB script triangles_remove_one.m 
The following MA TLAB script computes and plots the triangle interior angle ratio metric after 
individually removing each of the steel-cased wells from the network. 

clear 
% This matlab script looks at the effects that removing one of the 
%steel-cased (without replacement) would have on the estimation of the 

4 %gradient, using linear interpolation across oelauny triangles as the 
% estimator. 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

%Load data 
addpath ' .. \common_programs\'; 

%well datat (x,y, fwh, res, casing type) 
wells= load(' .. \common_data\2007_well_data_for_triangles.dat'); 
names= textread(' .. \common_data\2007_well_names_for_triangles.dat', '%s'); 

%the majority of this analysis should be done without SNL-6 and SNL-15, 
%but some figures in text use them for comparison 
RHmask = wells(:,4) > -990;% exclude SNL-6 and SNL-15 
wells= wells(RHmask,:); 
names= names(RHmask,:); 
% RHmask = ones(size(wells,1),1); 

margin= load(' .. \common_data\composite_23_margin.dat'); 
noflow = load(' .. \common_data\no_flow_boundary.dat'); 
totalbdry = load(' .. \common_data\total_boundary.dat'); 
wipp = load(' .. \common_data\wipp_boundary.dat'); 

nearwipp = [min(wipp(:,1))-750.0,max(wipp(:,1))+750.0, ... 
min(wipp(:,2))-750.0,max(wipp(:,2))+750.0]; 

%wells that make a convex hull around the dataset of all wells 
hull = convhull(wells(:,1),wells(:,2)); 

steelwells = wells(wells(:,5)==1,1:3); %fifth column indicates casing type 
fiberwells = wells(wells(:,5)==0,1:3); 
stnames = {names{wells(:,5)==1}}; 

%wells on the hull that are also steel-cased 
j-1· 
f~r'i=1:size(steelwells,1) 

for k=1:size(hull,1) 

Page 106 of 133 



 

 Information Only 

AP-111 Rev. 1 Monitoring Network Design Optimization 

40 

42 

44 

46 

48 

50 

52 

54 

end 
end 

if sqrt((steelwells(i,1)- wells(hull(k),1))A2 + ... 
(steelwells(i,2)- wells(hull(k),2))A2) < 1 

sthull (j) = i; 

end 
j=j+1; 

xt=wells(: ,1); 
yt=we 11 s (: , 2) ; 
ht=wells(:, 3); 
nw = size(xt,1); 
nst = size(steelwells,1); 
Q = zeros(nst+1,3); 

%calculation grid (not MODFLOW grid) is minimal grid which includes 
56 % convex hu 11 around data 

xmin = min(xt); ymin = min(yt); 
58 xmax = max (xt) ; ymax = max (yt) ; 

dx = 100.0; dy = 100.0; %note: using lOOxlOO is slow. 
60 

62 

64 

66 

68 

[X,Y] = meshgrid(xmin:dx:xmax, ymin:dy:ymax); 
nx = s~ze(x,2); 
ny = slZe(X, 1); 

INSIDE= inpolygon(X,Y,totalbdry(:,1),totalbdry(:,2)); 

npts = numel(x); 

%direction and magnitude of gradient in each cell, for 
70 %scenario of removing each steel-casing well + base case 

72 GRAD= zeros(npts,nst+1,2); 

74 %effects of removing one steel-casing well + base case for comparison 
for jj=1:nst+1 

76 

78 

80 

82 

84 

86 

88 

90 

92 

if jj < nst+1 

else 

end 

%set of x,y,h without steel casing well jj 
x = [fiberwells(:,1);steelwells(1:jj-1,1);steelwells(jj+1:nst,1)] 
y = [fiberwells(:,2);steelwells(1:jj-1,2);steelwells(j~+1:nst,2)] 
h = [fiberwells(:,3);steelwells(1:JJ-1,3);steelwells(JJ+1:nst,3)] 

x= xt; 
y=yt; 
h=ht; 

tri = delaunay(x,y); 
nt = size(tri,1); 

94 

D = zeros(size(tri,1),1); 
coeff = zeros(size(tri,1),4); 
grad = zeros(size(tri, 1), 2); %angle and magnitide of hydraulic gradient 
geom = zeros(size(tri,1),8); %3 sides, 3 angles, area, # pts inside 

96 %compute equation for line through 3 points 
%value of determinant used in denominator of Cramer's rule 

~ D(1:nt) = x(tri(:,1)).*y(tri(:,2)) + x(tri(:,2)).*y(tri(:,3)) + ... 
y(tri(:,1)).*x(tri(:,3)) - x(tri(:,3)).*y(tri(:,2))- ... 

100 x(tri(:,1)).*y(tri(:,3)) - x(tri(:,2)).*y(tri(:,1)); 

102 

104 

106 

% a (coefficient on x) 
coeff(1:nt,1) = (h(tri(:,1)).*y(tri(:,2)) + y(tri(:,1)).*h(tri(:,3)) + ... 

h(tri(:,2)).*y(tri(:,3)) - h(tri(:,3)).*y(tri(:,2))- ... 
h(tri(:,2)).*y(tri(:,1)) - h(tri(:,1)).*y(tri(:,3)))./D; 

% b (coefficient on y) 
100 coeff(1:nt,2) = (x(tri(:,1)).*h(tri(:,2)) + h(tri(:,1)).*x(tri(:,3)) + ... 

x(tri(:,2)).*h(tri(:,3))- x(tri(:,3)).*h(tri(:,2))- ... 
110 x(tri(:,2)).*h(tri(:,1))- x(tri(:,l)).*h(tri(:,3)))./D; 

112 

114 

116 

118 

% c (constant coefficient) 
coeff(1:~t,3) = ~x(tr~(:,1)).:y(tr~(:,2)).*h(tri(:,3)) 

y(tn(:,1)). h(tn(:,2)). x(tn(:,3)) + .. . 
x(tri(:,2)).*y(tri(:,3)).*h(tri(:,1))- .. . 
x(tri(:,3)).*y(tri(:,2)).*h(tri(:,1))- .. . 
x(tri(:,2)).*y(tri(:,1)).*h(tri(:,3))- .. . 
x(tri(:,1)).*y(tri(:,3)).*h(tri(:,2)))./D; 

120 %compute angle and magnitude of hydraulic gradient 

+ ... 
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grad(1:nt,1) = atan2(coeff(:,2),coeff(:,1)); 
grad(1:nt,2) = sqrt(sum(coeff(:,1:2).A2,2)); 

%map results from "vector" triangles to "raster" grid 
for kk=1:nt 

end 

%result is a logical vector, indicating ir the cell is in (T) or 
% out (F) side this current triangle 
IN= reshape(inpolygon(X,Y,x(tri(kk,1:3)),y(tri(kk,1:3))),npts,1); 

% sum(IN) = number or cells inside the triangle 
% ones(sum(IN))*kk = column vector or the counter kk 
% coeff( ... ,1:2) =X & y gradient repeated for every Cell inside 
% that triangle, copied to correct locations in GRAD 

GRAD(IN,jj,1:2) = coeff(ones(sum(IN),1)*kk,1:2); 

%calculate geometric things related to triangles 
% lengths from Pythagorean theorem 
%angles from cosine law 
%area from Matlab built-in rcn 

% length or side a (2->3) 
1# geom(1:nt,1) = sqrt((x(tri(:,3))- x(tri(:,2))).A2 + 

(y(tri(:,3))- y(tri(:,2))).A2); 
146 % length or side b (3->1) 

geom(1:nt,2) = sqrt((x(tri(:,1))- x(tri(:,3))).A2 + 
148 (y(tri(:,1))- y(tri(:,3))).A2); 

% length or side c (1->2) 
1m geom(1:nt,3) = sqrt((x(tri(:,2))- x(tri(:,1))).A2 + 

(y(tri(:,2))- y(tri(:,1))).A2); 
152 

%angle 1 between sides b & c in radians 
1~ geom(1:nt,4) = acos((sum(geom(:,2:3).A2,2)- geom(:,1).A2)./ ... 

(2.0*prod(geom(:,2:3),2))); 
156 % angle 2 between sides a & c in radians 

geom(1:nt,S) = acos((sum(geom(:,1:2:3).A2,2)- geom(:,2).A2)./ ... 
1~ (2.0*prod(geom(:,1:2:3),2))); 

%angle 3 between sides b & a in radians 
160 geom(1:nt,6) = acos((sum(geom(:,1:2).A2,2)- geom(:,3).A2)./ 

(2.0*prod(geom(:,1:2),2))); 
162 

%area or triangle - use MATLAB built-in function 
1M geom(1:nt,7) = polyarea(x(tri(:,1:3)),y(tri(:,1:3)),2); 

166 % compute goodness triangle criteria 
ang_ratio = min(geom(:,4:6), [],2)./max(geom(:,4:6),[],2); 

168 
%area-weighted mean angle ratio 

170 Q(jj,1) = sum(ang_ratio(:).*geom(:,7))/(nt*sum(geom(1:nt,7))); 

172 %area-weighted median angle ratio 
Q(jj,2) = median(ang_ratio(:).*geom(:,7))/sum(geom(1:nt,7)); 

174 

176 

178 

180 

end 

%median triangle area 
Q(jj,3) = median(geom(:,?)); 

if sum(RHmask) == 44 

182 
%plot figures showing distribution or metrics ror 2007 culebra network 
fi!;Jure(); 
trlsurf(tri,x,y,ones(size(x),1),log10(geom(:,7))); 

184 

186 

188 

190 

192 

194 

196 

198 

200 

view(2) 
axis(' image') 
xlabel('NAD27 UTM x zone 13 [m]', 'Fontsize',12) 
ylabel('NAD27 UTM Y zone 13 [m]','Fontsize',12) 
cb = colorbar; 
set(get(cb,'ylabel'),'string', 'lo9_{10}(trian!;Jle area [mA2])', 'Fontsize',12); 
text(6.06E5,3.593E6, 'a', 'Fontsize ,20, 'FontWe1ght', 'bold') 
brighten(0.25); 
print('-dmeta', 'triangles_2007_network_log10_area.emf') 

trisurf(tri,x,y,ones(size(x),1),ang_ratio); 
view(2) 
axis(' image') 
xlabel('NAD27 UTM X zone 13 [m]', 'Fontsize',12) 
ylabel('NAD27 UTM v zone 13 [m]', 'Fontsize',12) 
cb = colorbar; 
set(get(cb, 'ylabel'),'string','interior angle ratio', 'Fontsize',12); 
text(6.06E5,3.593E6,'b', 'Fontsize',20, 'FontWeight', 'bold') 
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202 brighten(0.25); 

204 

206 

208 

210 

212 

214 

216 

218 

220 

222 

224 

226 

228 

230 

232 

234 

236 

238 

240 

242 

244 

246 

248 

250 

252 

254 

256 

258 

260 

262 

264 

266 

268 

270 

272 

274 

276 

278 

280 

else 

print('-dmeta','triangles_2007_network_angratio_area.emf') 

trisurf(tri,x,y,ones(size(x),1),log10(grad(:,2))); 
view(2) 
axis(' image') 
xlabel('NAD27 UTM x zone 13 [m]','Fontsize',12) 
ylabel('NAD27 UTM Y zone 13 [m]','Fontsize',12) 
cb = colorbar; 
set(get(cb,'ylabel'),'string', 'lo9_{10}(gradient ma9nitude)', 'Fontsize',12); 
text(6.06E5,3.593E6, 'c', 'Fontsize ,20, 'Fontweight', bold') 
brighten(0.25); 
print('-dmeta','triangles_2007_network_gradmag_area.emf') 

figure() 
subplot(131) 
plot(lo910(geom(:,7)),ang_ratio, 'o') 
xlabel( log_{10}(triangle area [mA2])') 
ylabel('interior angle ratio') 
axis([5,8,0,1]) 
text(7.5,0.9, 'a', 'Fontsize',22, 'Fontweight', 'bold') 
subplot(132) 
plot(lo910(grad(:,2)),ang_ratio,'+') 
xlabel( log_{10}(gradient ma9nitude)') 
ylabel('interior angle ratio) 
axis ( [- 5, 0, 0, 1~) 
text(-0.6,0.9, b','Fontsize',22,'Fontweight', 'bold') 
subplot(133) 
plot(lo910(grad(:,2)),log10(geom(:,7)), '*') 
ylabel( log_{10}(triangle area [mA2])') 
xlabel('log_{10}(gradient magnitude)') 
axis([ -5,0, 5,8]) 
text(-0.6,7.7, 'c','FontSize',22,'FontWeight', 'bold') 
print('-dmeta','scatter_plots_2007_network_metrics.emf') 

fi!;Jure() 
tnplot(tri ,x,y) 
axis(' image') 
hold on 
plot ( fi be rwe ll s (: , 1) , fi be rwe ll s (: , 2) , 'bs ' , ... 

'Markersize',6, 'MarkerFacecolor', 'b'); 
plot([steelwells(1:i-1,l);steelwells(i+1:nst,1)], 

[steelwells(1:i-1,2);steelwells(i+1:nst,2)],'ro', 
'Markersize',6,'MarkerFacecolor', 'r'); 

plot(marginC;,1),marginC;,2),:-m• 1 '~iryewi9th' 1 2);. plot(noflow(.,1),noflow(.,2), --k, L1neW1dth ,2), 
p1ot(wipp(:,1),~ipp(:,2), '-k', 'Linewidth',2); 
m1dx = sum(x(trl(:,1:3)),2)/3.0; 
midy = sum(y(tri(:,1:3)),2)/3.0; 
quiver(midx,midy,-coeff(:,1),-coeff(:,2),2.5, 'k', 'Linewidth',2) 
xlabel('NAD27 UTM x zone 13 [m]', 'Fontsize',12) 
ylabel('NAD27 UTM Y zone 13 [m]', 'Fontsize',12) 
text(6.06E5,3.594E6,'a','Fontsize',22, 'Fontweight','bold') 
print('-dmeta', 'vector_plots_2007_network.emf') 

%plot figures showing distribution of metrics for 2007 culebra network (no SNL-6 or SNL-15) 
fi!;Jure(); 
trlsurf(tri,x,y,ones(size(x),1),log10(geom(:,7))); 
view(2) 
axis (' image') 
xlabel('NAD27 UTM x zone 13 [m]','Fontsize',12) 
ylabel('NAD27 UTM Y zone 13 [m]','Fontsize',12) 
cb = colorbar; 
set(get(cb,'ylabel'),'string', 'lo9_{10}(trian!;Jle area [mA2])','Fontsize',12); 
text(6.06E5,3.593E6,'a','Fontsize ,20, 'FontWe1ght','bold') 
brighten(0.25); 
print('-dmeta','triangles_noSNL15-6_network_log10_area.emf') 

trisurf(tri,x,y,ones(size(x),1),ang_ratio); 
view(2) 
axi s (' image') 
xlabel('NAD27 UTM x zone 13 [m]', 'Fontsize',12) 
ylabel('NAD27 UTM Y zone 13 [m]', 'Fontsize',12) 
cb = colorbar; 
set(get(cb, 'ylabel'), 'string', 'interior angle ratio', 'Fontsize',12); 
text(6.06E5,3.593E6, 'b', 'Fontsize',20, 'FontWeight','bold') 
brighten(0.25); 
print('-dmeta','triangles_noSNL15-6_network_angratio_area.emf') 

trisurf(tri,x,y,ones(size(x),1),log10(grad(:,2))); 
282 vi ew(2) 
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320 

322 
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330 

332 
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axis(' image') 
xlabel('NAD27 UTM x zone 13 [m]','Fontsize',12) 
ylabel('NAD27 UTM v zone 13 [m]','Fontsize',12) 
cb = colorbar; 
set(get(cb,'ylabel'),'string','lo~_{10}(gradient ma~nitude)', 'Fontsize',12); 
text(6.06E5,3.593E6,'c','Fontsize ,20,'Fontweight', bold') 
brighten(0.25); 
print('-dmeta','triangles_noSNL15-6_network_gradmag_area.emf') 

end 

figure() 
subplot (131) 
plot(lo~10(geom(:,7)),ang_ratio, 'o') 
xlabel( log_{10}(triangle area [mA2])') 
ylabel('interior angle ratio') 
axis( [5, 8, 0, 1]) 
text(7.5,0.9, 'a', 'Fontsize',22, 'Fontweight', 'bold') 
subplot(132) 
plot(lo~10(grad(:,2)),ang_ratio, '+') 
xlabel( log_{10}(gradient ma~nitude)') 
ylabel('interior angle ratio) 
axis([-5,0,0,1]) 
text(-0.6,0.9, 'b', 'Fontsize',22, 'Fontweight', 'bold') 
subplot(133) 
plot(lo~10(grad(:,2)),log10(geom(:,7)), '*') 
ylabel( log_{10}(triangle area [mA2])') 
xlabel('log_{10}(gradient magnitude)') 
axis([-5,0,5,8]) 
text(-0.6,7.7, 'c', 'Fontsize',22, 'Fontweight', 'bold') 
print('-dmeta', 'scatter_plots_noSNL15-6_network_metrics.emf') 

fi!Jure() 
tnplot(tri ,x,y) 
axis(' image') 
hold on 
plot(fiberwells(:,1),fiberwells(:,2), 'bs', 

'Markersize',6,'MarkerFacecolor', 'b'); 
plot([steelwells(1:i-1,1);steelwells(i+1:nst,1)], ... 

[steelwells(1:i-1,2);steelwells(i+1:nst,2)], 'ro', 
'Markersize',6,'MarkerFacecolor', 'r'); 

plot(margin(:,1),margin(:,2), :-m' 1 '~i~ewi~th' 1 2);_ plot(noflow(.,1),noflow(.,2), --k, L1neW1dth ,2), 
plot(wipp(:,1),wipp(:,2), '-k', 'Linewidth',2); 
midx = sum(x(tri(:,1:3)),2)/3.0; 
midy = sum(y(tri(:,1:3)),2)/3.0; 
quiver(midx,midy,-coeff(:,1),-coeff(:,2),0.5, 'k', 'Linewidth' ,2) 
xlabel('NAD27 UTM x zone 13 [m]', 'Fontsize',12) 
ylabel('NAD27 UTM v zone 13 [m]', 'Fontsize',12) 
text(6.06E5,3.594E6, 'b', 'Fontsize',22, 'Fontweight','bold') 
print('-dmeta', 'vector_plots_noSNL15-6_network.emf') 

%save results to file for making tables 
stnames 
out= abs(100.0*(Q(1:nst,1:3)-Q(ones(nst,1)*(nst+1),1:3))./Q(ones(nst,1)*(nst+1),1:3)); 
save('triangles_remove_one_well.dat', 'out', '-ASCII'); 

figure() 
scrnsz = get(O,'screensize'); 

% change in mean interior angle-ratio of network 
figure() 
ylab ={'%\Delta in area-weighted mean angle ratio', 

'%\Delta in area-weighted median angle ratio', 
'%\Delta in median triangle area'}; 

fname = {'mean_angle', 'median_angle', 'median_area'}; 

for i=1:3 
elf 
tmp=abs(100.0*(Q(1:nst,i)-Q(nst+1,i))./Q(nst+1,i)); 
bar(1:nst,tmp,'r'); 
hold on; 
tmp(sthull(:)) = 0.0; 
bar(1:nst,tmp, 'b'); 
xlabel('removal of steel-cased well'); 
ylabel(ylab{i},'fontsize',13); 
set(gcf, 'PaperType', 'tabloid') 
set(gca, 'XTickMode', 'manual'); 
set(gca, 'XTick',1:nst); 
set(gca, 'XTickLabel',stnames); 
set(gcf, 'PaperPositionMode','auto') 
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3M set(gcf,'Position',(10,50,0.85*scrnsz(3),0.33*scrnsz(4)]) 
print('-dmeta',['triangles_remove1_',fname{i},'_compare.emf']) 

366 end 

368 % relative difference between gradient without steel well and base case 
BASE= GRAD(1:npts,ones(nst,1)*(nst+1),1:2); 

370 DIFF = (GRAD(1:npts,1:nst,1:2) - BASE)./BASE; 
mag= sqrt(sum((GRAD(:,1:nst,1:2) - GRAD(:,ones(nst,1)*(nst+1),1:2)).A2,3)); 

372 

374 

376 

378 

380 

382 

384 

386 

388 

390 

392 

394 

396 

398 

400 

402 

404 

406 

408 

410 

412 

414 

416 

418 

420 

422 

424 

426 

428 

430 

432 

434 

436 

438 

440 

442 

444 

%area "effected" by removal of well (square meters) 
elf; 
subplot(211) 
tol = l.OE-3; 
mask= mag> tol; 
mask(-INSIDE) = false; 
count= zeros(nst,1); 
for j=1:nst 

count(j) = sum(mag(:,j) > tol); 
end 
tmp = dx*dy*(count); 
bar(1:nst,log10(tmp), 'r'); 
hold on; 
tmp(sthull(:)) = 0.0; 
bar(1:nst,log10(tmp), 'b'); 
xlabel('removal of steel-cased well'); 
ti~le('log_{10}(area) effected (0.001) by removal [mA2]','fontsize',13); 
axls([O,nst+1,4,8]); 
set(gcf,'PaperType','tabloid') 
set(gca,'XTickMode','manual'); 
set(gca,'XTick',1:nst); 
set(gca,'XTickLabel',stnames); 
subplot(212) 
tol = l.OE-2; 
mask= mag> tol; 
mask(-INSIDE) = false; 
count= zeros(nst,1); 
for j=1:nst 

count(j) = sum(mag(:,j) > tol); 
end 
tmp = dx*dy*(count); 
bar(1:nst,log10(tmp),'r'); 
hold on; 
tmp(sthull(:)) = 0.0; 
bar(1:nst,log10(tmp), 'b'); 
xlabel('removal of steel-cased well'); 
title('log_{10}(area) effected (0.01) by removal [mA2]', 'fontsize',13); 
axis([O,nst+1,4,8]); 
set(gcf, 'PaperType', 'tabloid') 
set(gca, 'XTickMode', 'manual'); 
set(gca, 'XTick',1:nst); 
set(gca, 'XTickLabel',stnames); 

set(gcf,'PaperPositionMode','auto') 
set(gcf, 'Position',[10,50,0.85*scrnsz(3),0.5*scrnsz(4)]) 
print('-dmeta', 'triangles_remove1_effected_logarea_compare.emf') 

DIFF(-INSIDE,:,:) =NaN; 

%change in gradient magnitude upon removal of steel well 
elf; 
DIFF2 = GRAD(1:npts,1:nst,1:2) - BASE; %not normalized 
LEN= sqrt(DIFF2(1:npts,1:nst,1).A2 + DIFF2(1:npts,1:nst,2).A2); 
tmp = sum(LEN(mask),1)./count; 
bar(1:nst,tmp, 'r'); 
tmp(sthull(:)) = 1.0; 
bar(1:nst,tmp,'b'); 
set(gca,'YScale','log') 
hold on; 
xlabel('removal of steel-cased well'); 
ylabel('\Delta in 9radient magnitude from well removal','fontsize',13); 
set(gcf,'PaperType ,'tabloid') 
set(gca,'XTickMode','manual'); 
set(gca, 'XTick',1:nst); 
set(gca, 'XTickLabel',stnames); 
set(gcf, 'PaperPositionMode', 'auto') 
set(gcf, 'Position', [10,50,0.85*scrnsz(3),0.33*scrnsz(4)]) 
print('-dmeta','triangles_remove1_gradmag_compare.emf') 

%change in mean gradient angle upon removal of steel well 
elf; 
angle= abs(atan2(DIFF2(1:npts,1:nst,2), DIFF2(1:npts,1:nst,1))); 
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446 

448 

450 

452 

454 

456 

458 

460 

462 

464 

466 

468 

470 

472 

474 

476 

478 

tmp = sum(angle(mask),1)./count; 
bar(1:nst,tmp, 'r'); 
hold on; 
tmp(sthull(:))=O.O; 
bar(1:nst,tmp,'b'); 
xlabel('removal of steel-cased well'); 
ylabel(' 1\Delta in gradient direction! from well removal', 'fontsize',13); 
v=axis(); 
axis([v(1:2),0,pi]) 
set(gca,'YTick',O:pi/4:pi); 
set(gca, 'YTickLabel ', 'OI45I90I135I180'); 
set(gcf,'PaperType','tabloid') 
set(gca,'XTickMode','manual'); 
set(gca, 'XTick',1:nst); 
set(gca,'XTickLabel',stnames); 
set(gcf, 'PaperPositionMode', 'auto') 
set(gcf, 'Position' ,[10,50,0.85*scrnsz(3),0.33*scrnsz(4)]) 
print('-dmeta', 'triangles_remove1_gradang_compare.emf') 

gradHSVimage = zeros(ny,nx,3); 

% largest magnitude change seen in any figure (for consistent scaling) 
maxmag = max(max(log10(sqrt(DIFF(:,:,1).A2 + DIFF(:,:,2).A2)))); 

figure(); 
for i=1:nst 

% easier to re-compute than save 
x = [fiberwells(:,1);steelwells(1:i-1,1);steelwells(i+1:nst,1)]; 
y = [fiberwells(:,2);steelwells(1:i-1,2);steelwells(i+1:nst,2)]; 

%wells that make a convex hull for the dataset less one well 
localhull = convhull(x(:),y(:)); 
LOCINSIDE = inpolygon(X,Y,x(localhull),y(localhull)); 

480 elf() 
mag= sqrt(reshape(DIFF(:,i,1).A2,ny,nx) + reshape(DIFF(:,i,2).A2,ny,nx)); 

482 rex= reshape(DIFF(:,i,1),ny,nx); 
rey = reshape(DIFF(:,i,2),ny,nx); 

484 angle= abs(atan2(rey,rex)); 

486 %clear results outside the convex hull of the reduced dataset. 
mag(-LOCINSIDE) = NaN; 

488 angl e(-LOCINSIDE) = NaN; 

490 %map angle onto hue and loglO(magnitude) onto brightness (assume full 
% saturation) 

492 

494 

496 

498 

500 

% data range: 0 <= theta <= +pi 
blue = 0.6534; %red is 1.0; scale range from blue to red 
gradHSVimage(:,:,1) = (1.0- blue)*angle./pi +blue; 
gradHSVimage(:,:,2:3) = 1.0; %full saturation/ brightness 

logmag = log10(mag); 
minmag = log10(tol); 

%reset values lower than tolerance to tolerance 
502 l ogmag (l ogmag < mi nmag) = mi nmag; 

gradALPHA = (logmag- minmag)./(maxmag - minmag); 
504 

506 

508 

510 

h = image(hsv2rgb(gradHSVimage)); 
set(h, 'xoata' ,x(l, :)); %assign coorinates to pixels to allow 
set(h,'YData',Y(:,1));% overlays to be plotted over image 
set(h, 'AlphaData' ,gradALPHA); %make "no-change" areas clear 
axis xy % flip y-axis from image convention to plot convention 

daspect([1,1,1]); 
~2 hold on; 

title(stnames{i}, 'fontsize',15); 
~4 xlabel('NAD27 UTM x zone 13 [m]'); 

ylabel('NAD27 UTM y zone 13 [m]'); 
516 

tri = delaunay(x,y); 
518 triplot(tri ,x,y, '-g', 'Linewidth' ,1/3); 

520 hold on 
plot(fiberwells(:,1),fiberwells(:,2),'bs', 

522 'Markersize', 9, 'MarkerFaceColor', 'b'); 
plot([steelwells(1:i-1,1);steelwells(i+1:nst,1)], ... 

~4 [steelwells(1:i-1,2);steelwells(i+1:nst,2)],'ro', 
'Markersize',9, 'MarkerFacecolor','r'); 
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526 

528 

530 

532 

534 

536 

538 

540 

542 

544 
end 

546 

plot(steelwells(i ,1),steelwells(i ,2), 'ko', .. . 
'Linewidth',2.5,'MarkerEdgecolor','r', .. . 
'Markersize',14,'MarkerFacecolor','k'); 

plot(margin(:,1),margin(:,2),;-m' 1 '~i~eWi9th' 1 2);_ plot(noflow(.,1),noflow(.,2), --k, L1neW1dth ,2), 
plot(wipp(:,1),wipp(:,2),'-k','Linewidth',2); 

if strcmp(stnames{i},'H-2b2') I I strcmp(stnames{i}, 'ERDA-9') II ... 
strcmp(stnames{i}, 'H-3b2') II strcmp(stnames{i}, 'WIPP-19') 

% for on-site wells, zoom in to WIPP LWB area 

else 
axis(nearwipp); 

axis([xmin,xmax,ymin,ymax]); 
end 
set(gcf,'PaperPositionMode', 'auto') 
set(gcf, 'PaperType' 'usletter') 
set(gcf, 'Position',t10,SO,(scrnsz(4)-120)*0.85,scrnsz(4)-120]) 
print('-dmeta', ['triangles_grad_change_',stnames{i}, '.emf']); 

8.3.4. MATLAB script triangles_remove_two.m 
The following MATLAB script computes and plots the triangle interior angle metric upon 
removal of two steel wells from the well network. 

clear 
2 % This matlab script looks at the effects that removing one of the 

%steel-cased (without replacement) would have on the estimation of the 
4 %gradient, using linear interpolation across Delauny triangles as the 

% estimator. 
6 

firstWell = {'WIPP-25', 'WIPP-13', 'H-12', 'H-7b1'}; 
8 nfst = size(firstwell,2); 

10 %Load data 
addpath ' .. \common_programs\'; 

12 

14 
%well datat (x,y,fwh,res,casing type) 
wells= load(' .. \common_data\20 7_well_data_for_triangles.dat'); 
names= textread(' .. \common_data\2007_well_names_for_triangles.dat', '%s'); 

16 
RHmask = wells(:,4) > -990;% exclude SNL-6 and SNL-15 

18 wells= wells(RHmask, :); 
names= names(RHmask,:); 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

40 

42 

44 

46 

margin= load(' .. \common_data\composite_23_margin.dat'); 
noflow = load(' .. \common_data\no_flow_boundary.dat'); 
totalbdry = load(' .. \common_data\total_boundary.dat'); 

%wells that make a convex hull around the dataset of all wells 
hull= convhull(wells(:,1),wells(:,2)); 

steelwells = wells(wells(:,5)==1,1:3); %fifth column indicates casing type 
fiberwells = wells(wells(:,5)==0,1:3); 
stnames = {names{wells(:,5)==1}}; 

%wells on the hull that are also steel-cased 
i-1· 
f~r'i=1:size(steelwells,1) 

end 

for k=1:size(hull,1) 

end 

if sqrt((steelwells(i,1)- wells(hull(k),1))A2 + .•• 
(steelwells(i,2)- wells(hull(k),2))A2) < 1 

sthull (j) = i; 
j=j+1; 

end 

xt=we 11 s (: , 1) ; 
yt=wells(:,2); 
ht=wells(:,3); 
nw = size(xt,1); 
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a nst = size(steelwells,1); 
Q = zeros(nst+1,nfst,2); 

50 Q = NaN; 

52 stnames{nst+1} = 1 BASE-CASE 1
; 

54 %calculation grid (not MODFLOW grid) is minimal grid which includes 
%convex hull around data 

56 xmi n = mi n(xt); ymi n = mi n(yt); 
xmax = max(xt); ymax = max(yt); 

58 dx = 100.0; dy = 100.0; %note: using lOOxlOO is slow. 

60 

62 

64 

66 

68 

70 

72 

[X 1 Y] = meshgrid(xmin:dx:xmax 1 ymin:dy:ymax); 
nx = s1ze(X 1 2); 
ny = S1Ze(X 1 1); 

INSIDE= inpolygon(X 1 Y1 totalbdry(:,1),totalbdry(:,2)); 

npts = numel(x); 

%direction and magnitude of gradient in each cell, for 
%scenario of removing each steel-casing well + base case 

GRAD = ones(npts,nst+1,2); 

%effects of removing one steel-casing well + base case for comparison 
74 for mm=1:nfst 

76 

78 

80 

82 

84 

86 

88 

90 

92 

94 

96 

98 

100 

102 

104 

106 

108 

110 

112 

114 

116 

118 

120 

122 

124 

126 

128 

for jj=1:nst+1 

% two steel wells must be different 
if -strcmp(firstwell{mm},stnames{jj}) 

if jj < nst+1 
%set of x,y,h without steel casing well jj or mm 
x = [fiberwells(:,1);steelwells(-strcmp(stnames(1:nst),stnames{jj}) & ... 

-strcmp(stnames(1:nst),firstwell{mm}),1)]; 
y = [fiberwells(:,2);steelwells(-strcmp(stnames(1:nst),stnames{jj}) & ... 

-strcmp(stnames(1:nst),firstwell{mm}),2)]; 
[fiberwells(:,3);steelwells(-strcmp(stnames(1:nst),stnames{jj}) & ... 

-strcmp(stnames(1:nst),firstwell{mm}),3)]; 
else 

end 

h 

x xt; 
y = yt; 
h = ht; 

tri = delaunay(x,y); 
nt = size(tri,1); 

D = zeros(size(tri,1),1); 
coeff = zeros(size(tri,1),4); 
grad= zeros(size(tri,1),2);% angle and magnitide of hydraulic gradient 
geom = zeros(size(tri,1),8); %3 sides, 3 angles, area,# pts inside 

%%compute equation for line through 3 points 
%value of determinant used in denominator of Cramer's rule 
D(1:nt) = x(tri(:,1)).*y(tri(:,2)) + x(tri(:,2)).*y(tri(:,3)) + ... 

y(tri(:,1)).*x(tri(:,3))- x(tri(:,3)).*y(tri(:,2))- ... 
x(tri(:,1)).*y(tri(:,3))- x(tri(:,2)).*y(tri(:,1)); 

%a (coefficient on x) 
coeff(1:nt,1) = (h(tri(:,1)).*y(tri(:,2)) + y(tri(:,1)).*h(tri(:,3)) + ... 

h(tri(:,2)).*y(tri(:,3))- h(tri(:,3)).*y(tri(:,2))- ... 
h(tri(:,2)).*y(tri(:,1))- h(tri(:,1)).*y(tri(:,3)))./D; 

% b (coefficient on y) . 
coeff(1:nt,2) = (x(tri(:,1)).*h(tri(:,2)) + h(tri(:,1)).*x(tri(:,3)) + ... 

x(tri(:,2)).*h(tri(:,3))- x(tri(:,3)).*h(tri(:,2))- ... 
x(tri(:,2)).*h(tri(:,1))- x(tri(:,1)).*h(tri(:,3)))./D; 

% c (constant coefficient) 
coeff(1:nt,3) = (x(tri(:,1)).*y(tri(:,2)).*h(tri(:,3)) + ... 

y(tri(:,1)).*h(tri(:,2)).*x(tri(:,3)) + .. . 
x(tri(:,2)).*y(tri(:,3)).*h(tri(:,1))- .. . 
x(tri (:, 3)). *y(tri (:, 2)). *h(tri (: ,1)) - .. . 
x(tri(:,2)).*y(tri(:,1)).*h(tri(:,3))- .. . 
x(tri(:,1)).*y(tri(:,3)).*h(tri(:,2)))./D; 

% compute angle and magnitude of hydraulic gradient 
grad(1:nt,1) = atan2(coeff(:,2),coeff(:,1)); 
grad(1:nt,2) = sqrt(sum(coeff(:,1:2).A2,2)); 
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grad(l:nt,3) = max(h(tri(:,1:3)),[],2)- min(h(tri(:,1:3)),[],2); 
130 

132 
%map results from "vector" triangles to "raster" grid 
for kk=l:nt 

134 
%result is a logical vector, indicating if the cell is in (T) or 
% out (F) side this current triangle 
IN= reshape(inpolygon(X,Y,x(tri(kk,1:3)),y(tri(kk,1:3))),npts,l); 

136 
% sum(IN) = number of cells inside the triangle 
% ones(sum(IN))*kk = column vector of the counter kk 138 
% coeff( ... ,1:2) = x & y gradient repeated for every cell inside 
% that triangle, copied to correct locations in GRAD 140 

142 

144 

146 

148 

150 

152 

154 

156 

158 

end 
GRAD(IN,jj,1:2) = coeff(ones(sum(IN),l)*kk,1:2); 

~calculate geometric things related to triangles 
% lengths from Pythagorean theorem 
%angles from cosine law 
%area from Matlab built-in fen 

% length of side a (2->3) 
geom(l:nt,l) = sqrt((x(tri(:,3))- x(tri(:,2))).A2 + 

(y(tri(:,3))- y(tri(:,2))).A2); 
% length of side b (3->1) 
geom(l:nt,2) = sqrt((x(tri(:,l))- x(tri(:,3))).A2 + 

(y(tri(:,l))- y(tri(:,3))).A2); 
% length of side c (1->2) 
geom(l:nt,3) = sqrt((x(tri(:,2)) - x(tri(:,l))).A2 + 

(y(tri(:,2))- y(tri(:,l))).A2); 

160 

162 

164 

%angle 1 between sides b & c in radians 
geom(l:nt,4) = acos((sum(geom(:,2:3).A2,2) - geom(:,l).A2)./ ... 

(2.0*prod(geom(:,2:3),2))); 
% angle 2 between sides a & c in radians 
geom(l:nt,S) = acos((sum(geom(:,1:2:3).A2,2) - geom(:,2).A2)./ ... 

(2.0*prod(geom(:,1:2:3),2))); 
% angle 3 between sides b & a in radians 166 

168 

170 

172 

174 

176 

178 

geom(l:nt,6) = acos((sum(geom(:,1:2).A2,2)- geom(:,3).A2)./ 
(2.0*prod(geom(:,1:2),2))); 

%area of triangle - use MATLAB built-in function 
geom(l:nt,?) = polyarea(x(tri(:,1:3)),y(tri(:,1:3)),2); 

% compute goodness triangle criteria 
ang_ratio = min(geom(:,4:6),[],2)./max(geom(:,4:6),[],2); 

% area-weighted angle ratio 
Q(jj,mm,l) = sum(ang_ratio(:).*geom(:,7))/sum(geom(l:nt,7)); 

% median triangle area 
180 Q(jj,mm,2) = median(geom(l:nt,7)); 

else 
182 Q(jj,mm,1:2) =NaN; 

end 
184 end 

end 
186 

scrnsz = get(O, 'Screensize'); 
188 

BASE= Q(ones(l,nst)*(nst+1),:,1:2); 
100 plt = (Q(l:nst,:,l:2)- BASE)./BASE; 

192 figure() 
hl = imagesc(plt(l:nst,:,l)); 

1M axis('image') 
%colormap(redwhitemap(reshape(plt(:,:,1),numel(plt(:,:,1))))); 

100 colorbar() 
figure() 

100 h2 = imagesc(plt(l:nst,:,2)); 
axis(' image') 

200 %colormap(redwhitemap(reshape(plt(:,:, 2), numel (plt(:,:, 2))))); 
colorbar() 

B. 4. Model Parameter Correlation Maximization Scripts 
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The first two scripts are run in Linux, then the following Python and R scripts are run in 
Windows and are used to compute the correlation and partial correlation results used in the 
analysis. 

8.4.1. Bash shell script checkout_ model_ data. sh 

The following Linux Bash shell script is run to check the Culebra MODFLOW model inputs and 
results needed out from CVS, convert the binary head output files to ASCII, perform directory 
manipulations and zip the results into a single file for transfer to Windows XP. 

#!/bin/bash 
2 

#this Bash script is run in Linux and checks out the model files 
4 # required to perform the model correlation analysis. 

6 repo=/nfs/data/CVSLIB 

s #check out the list of the final 100 fields used from AP-144 
cvs -d ${repo}/MiningMod checkout Inputs/keepers 

10 
#move it into the current directory 

12 mv Inputs/keepers . 
rm -rf Inputs 

14 
# checkout model inputs from Tfields repository in cvs (AP-114 Task 7) 

16 for d in -cat keepers-; do 
# checkout transmissivity and anisotropy fields 

18 cvs -d ${repo}/Tfields checkout outputs/${d}/modeled_{K,A}_field.mod 
done 

20 

22 
#modify the path of "updated" T-fields, so they are all at the 
# same level in the directory structure (to make these agree w/ mining mod repository) 

24 

26 

28 

30 

32 

34 

36 

38 

40 

42 

44 

46 

48 

50 

52 

if [-a keepers_short ]; then 

fi 

# delete any pre-existing files here, 
#since file is concatenated to in next loop 
rm keepers_short 

ford in 'cat keepers'; do 
bn='basename ${d}' 
# test whether it is a compound path 
if [ ${d} != ${bn} ]; then 

dn=- di rname ${d} 

fi 

mv ./Outputs/${d}/ ./Outputs/ 

#put an empty file in the directory to indicate 
# what the directory was previously named 
touch ./Outputs/${bn}/${dn} 

# create a keepers list without directories 
echo ${bn} >> keepers_short 

done 

#get output files from MiningMod cvs repository 
ford in 'cat keepers_short'; do 

# checkout particle tracking results (RO is no mining replicate) 
cvs -d ${repo}/MiningMod checkout Outputs/RO/${d}/dtrk.out 
# checkout binary heads 
cvs -d ${repo}/MiningMod checkout Outputs/RO/${d}/modeled_head.bin 

#move files into existing directories 
54 mv Outputs/RO/${d}/{dtrk.out,modeled_head.bin} outputs/${d}/ 

done 
56 

#remove intermediate directories 
58 rm -rf Outputs/RO 

rm -rf outputs/update 
60 rm -rf outputs/Update2 

62 #convert binary MODFLOW head output to ascii for use in AP-111 analysis 
ford in 'cat keepers_short'; do 
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64 cd outputs/${d} 
ln -sf .. / .. /head_bin2ascii.py 

66 python head_bin2ascii.py 
rm ./head_bin2ascii.py 

~ rm ./modeled_head.bin 
cd . ./ .. 

70 done 

72 #zip results up for transfer to windowz 
cd Outputs 

M zip -r model_files.zip r??? 
mv model_files.zip .. / 

8.4.2. Python script head bin2ascii .py 

The following Python script is run in Linux to convert the binary MODFLOW head output files 
to ASCII format, for transfer to Windows XP for further analysis. This script is called by the 
Bash shell script checkout_ model_ data. sh that checks the data out of CVS and does the 
looping over the directories. 

import struct 
2 from sys import argv,exit 

4 class FortranFile(file): 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

40 

42 

44 

46 

48 

50 

52 

54 

""" modified from May 2007 Enthought-dev mailing list post by Neil Martinsen-surrell""" 

def __ init __ (self,fname, mode='r', buf=O): 
file. __ init __ (self, fname, mode, buf) 
self.ENDIAN = '<' # little endian 

self.di = 4 #default integer (could be 8 on 64-bit platforms) 

def readReals(self, prec='f'): 
"""Read in an array of reals (default single precision) with error checking"'"' 
# read header (length of record) 

1 = struct.unpack(self.ENDIAN+'i',self.read(self.di))[O] 
data_str = self.read(l) 
len_real = struct.calcsize(prec) 
if 1 % len_real != 0: 

raise IOError('Error reading array of reals from data file') 
num = 1/len_real 
reals = struct.unpack(self.ENDIAN+str(num)+prec,data_str) 

# check footer 
if struct.unpack(self.ENDIAN+'i',self.read(self.di))[O] != 1: 

raise IOError('Error reading array of reals from data file') 
return list(reals) 

def readints(self): 
"""Read in an array of integers with error checking""" 

1 = struct.unpack('i',self.read(self.di))[O] 
data_str = self.read(l) 
len_int = struct.calcsize('i') 
if 1 % len_int != 0: 

raise IOError('Error reading array of integers from data file') 
num = 1/len_int 
ints = struct.unpack(str(num)+'i',data_str) 
if struct.unpack(self.ENDIAN+'i',self.read(self.di))[O] != 1: 

raise IOError('Error reading array of integers from data file') 
return list(ints) 

def readRecord(self): 
'"'"Read a single fortran record (potentially mixed reals and ints)""" 
dat = self.read(self.di) 
if len(dat) == 0: 

raise IOError('Empy record header') 
1 = struct.unpack(self.ENDIAN+'i',dat)[O] 
data_str = self.read(l) 

if len(data_str) != 1: 
raise IOError('oidn''t read enough data') 

check= self.read(self.di) 
if len(check) != 4: 

raise IOError('Didn''t read enough data') 
if struct.unpack(self.ENDIAN+'i',check)[O] != 1: 

raise IOError('Error reading record from data file') 
return data_str 
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56 

58 

def reshapev2m(v,nx,ny): 
"""Reshape a vector that was previously reshaped in c-ma~or order from a matrix, 
back into a c-major order matrix (here a list of lists).'"" 
m = [None]*ny 

60 n = nx*ny 

62 
for i,(lo,hi) in enumerate(zip(xrange(O, n-nx+l, nx), xrange(nx, n+l, nx))): 

m[i] = v[lo:hi] 
return m 

64 
def floatmatsave(filehandle,m): 

66 '""'writes array to open fi l ehandl e. 
Outer list is rows, inner lists are columns.""" 

68 
for row in m: 

70 f.write(' '.join([' %9.4f' %col for col in row]) + '\n') 

12 #open file and set endian-ness 
try: 

74 i nfn, outfn = argv [1: 3] 
except: 

76 print '2 command-line ar~uments not given, using default in/out filenames' 
infn = 'modeled_head.bin 

78 outfn = 'modeled_head.hed' 

80 ff = FortranFile(infn) 

82 #currently this assumes a single-layer MODFLOW model (or at least only one layer of output) 

84 # format of MODFLOW header in binary layer array 
fmt = '<2i2f16s3i' 

86 # little endian, 2 inregers, 2 floats, 
# 16-character string (4 element array of 4-byte strings), 3 integers 

88 
while True: 

90 try: 
# read in header 

92 h = ff. readRecord() 

94 except IOError: 
# exit while loop 

~ break 

98 else: 
# unpack header 

100 kstp,kper,pertim,totim,text,ncol ,nrow,ilay = struct.unpack(fmt,h) 

102 #print status/confirmation to terminal 

104 

106 

108 

110 

print kstp,kper,pertim,totim,text,ncol,nrow,ilay 

h = ff.readReals() 

ff.close() 

f = open(outfn, 'w') 

floatmatsave(f,reshapev2m(h,ncol,nrow)[::-1]) 
112 f.close() 

8.4.3. Python script load_model_data.py 

The following Python script is not called by itself, but instead is used as a library in two other 
Python scripts. This script loads the model input (transmissivity and anisotropy fields) and 
model output (head) from each of the 100 calibrated MODFLOW realizations. 

2 

4 

import numpy as np 
from os.path import join 
from glob import glob 

datadir = ' .. / .. / .. /common_data/' 
6 fh = open(datadir + 'model_domain_specs.dat', 'r') 

nx,ny = [int(x) for x in fh.readline().strip().split()] 
xmin,ymin = [float(x) for x in fh.readline().strip().split()] 
xmax,ymax = [float(x) for x in fh.readline().strip().split()] 

10 fh.close() 
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12 

14 

16 

18 

20 

22 

24 

dt = np.float64 # "double precision" 

# number of fields and elements in each 
numf = 100 
numel = nx*ny 
ndata = 3 
tcorr = np.zeros((ndata+1,numel),dtype=dt) 
hcorr = np.zeros((ndata,numel),dtype=dt) 
trav = np.zeros((numf,),dtype=dt) 

dpi = 160 
figsize = (14,6) 

kdat = np.zeros((numf,numel),dtype=dt) 
26 adat = np.zeros((numf,numel),dtype=dt) 

hdat = np.zeros((numf,numel),dtype=dt) 
28 

30 

32 

34 

36 

38 

40 

42 

# loop over all the directories, read input 
for i,d in enumerate(glob('r???')): 

print i ,d 
# x (row) log10 hydraulic conductivity 
kdat[i,:] = np.loadtxt(join(d, 'modeled_K_field.mod'),dtype=dt) 
# log10 ratio y/x (col/row) for conductivity 
adatLi,:] = np.loadtxt(join(d, 'modeled_A_field.mod'),dtype=dt) 

# log10 travel time to LWB is first column, last row 
fn = open(join(d, 'dtrk.out'), 'r') 
trav[i] = float(fn.readlines()[-1].split()[O]) 
fn.close() 

# read in modflow head (saved in file as a matrix already) 
hdat[i, :] = np.loadtxt(join(d, 'modeled_head.hed'),dtype=dt)[::-1,:].reshape((numel,)) 

44 
kdat = np.log10(kdat) 

46 ad at = np .l og10(adat) 
trav = np.log10(trav) 

48 
hdat[hdat == -999] = np.NaN 

50 
tflat = trav.flatten() 

~ kdat[kdat < -15] = np.NaN 
keff = kdat + 0.5*adat 

54 
print 'min log effective k:',np.nanmin(keff) 

W print 'max log effective k:',np.nanmax(keff) 

58 # define a mask that selects the WIPP LWB area + a buffer of cells around it 
wippmask = np.zeros((307,284),dtype='bool') #false boolean array 

w buffer = 15 
wippmask[121-buffer:185+buffer,88-buffer:152+buffer] = True 

~ wippmask.shape = (307*284,) 

M print 'successfully loaded model data' 

8.4.4. Python script export _pcor _inputs. py 

The following Python script calls the library load_ model_ data. py to read in the model data, 
then exports the Kerr and head data for an area surrounding the WIPP L WB for use in the 
following R script that does the partial correlation analysis. 

import numpy as np 
2 from load_model_data import * 

4 # save large matrix: nrows = 100 
# ncols = #elements (here (64 + (buffer * 2))**2 + 1 for travel time) 

6 
#save imported data for use in R 

8 # for partial correlation analysis 

10 #perform outer difference, then only use upper triangle of tensor 

12 np. savetxt(' keff _trav. dat', 
np.concatenate((keff[:,wippmask],trav[:,None]),axis=1), 

14 fmt='%. 7f') 
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np.savetxt('head_trav.dat', 
16 np.concatenate((hdat[:,wippmask],trav[:,None]),axis=l), 

fmt='%. 7f') 
18 

print 'saved data for partial correlation analysis in R' 

8.4.5. R script compute _partial_ correlations. R 

The following R script loads in the data exported by export_pcor_inputs .py, computes the 
partial correlation of Keff and head in each cell to travel times and head to travel times, 
accounting for the effects Keff or head in all other cells. 

# read in the matrix that has realizations as rows (100) and parameters as columns 
# (k or h at model cells and travel time as last column) 

4 k <- read.table('keff_trav.dat') 
l i brary(corpcor) 

6 

10 

12 

14 

16 

18 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

# this takes a lot of RAM (> 2GB) 
pc <- pcor.shrink(k) 

#write all rows, last column to file (partial correlation of each k to travel time 
#holding effects of all other k values constant) 
write.table(pc[,dim(pc)[l]],'kpc.out',row.names=FALSE,col.names=FALSE) 

h <- read.table('head_trav.dat') 
pc <- pcor.shrink(h) 

#write all rows, last column to file (partial correlation of each k to travel time 
#holding effects of all other k values constant) 
write.table(pc[,dim(pc)[l]], 'hpc.out',row.names=FALSE,col.names=FALSE) 

8.4.6. Python script spearman_rank_coefficient .py 

The following Python script computes correlation statistics between the results of the Culebra 
model calibration (particle tracking times to the WIPP L WB) and the Culebra model input files, 
creating plots of the results for the report. 

import numpy as np 
from os.path import join 
from glob import glob 
import matplotlib 
matplotlib.use('Agg') #to improve memory usage 
import matplotlib.pyplot as plt 
import matplotlib.colors as colors 

# save code for loading data in separate module 
from load_model_data import * 

def finish_fig(extents): 
'''Add common things to figures''' 
plt.hold = True 
plt.xlabel('UTM NAD27 X [km]') 
plt.axis(extents) 
locs,labels = plt.xticks() 
plt.xticks(locs,(locs/lOOO.O).astype(' ls3')) 
plt.ylabel('UTM NAD27 Y [km)') 
locs,labels = plt.yticks() 
plt.yticks~loc~,(loc~/lO?O.O);aSfYP~(' l~4')~rotation=90) 
plt.plot(wlpp[.,O],wlpp[.,l], k- ,l1new1dth-l) 
plt.plot(h2[:,0],h2[:,1],'g--',linewidth=2) 
plt.plot(h3[:,0],h3[:,1], 'r:',linewidth=2) 
plt.plot(salado[:,O],salado[:,l],'k:',linewidth=2) 
plt.plot(wells[fiberg,O],wells[fiberg,l], 'gs' ,markersize=4) 
plt.plot(wells[-fiberg,O],wells[-fiberg,l], 'ro',markersize=4) 
plt.axis('image') 
plt.axis(extents) 

# load in partial-correlation data exported from R 
32 pck = np.zeros((307*284,),dtype=dt) 
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pch = np.zeros((307*284,),dtype=dt) 
34 

pch[wippmask] = np.loadtxt('hpc.out',dtype=dt) 
36 pck[wippmask] = np.loadtxt('kpc.out' ,dtype=dt) 

~ pck.shape = (307,284) 
pch.shape = (307,284) 

40 

42 

44 

46 

print 'successfully loaded partial correlation data' 

for n in xrange(numel): 
if n % 10000 == 0: 

print n 

#A = travel time from c-2737 to WIPP LW8 (global) 
48 # 8 = head at same ce 77 as property (loca 7) 

# TX VS A/8 
50 # Ty vs A/8 

# Teff VS A/8 
52 #A vs 8 

54 datal= [kdat[:,n], kdat[:,n] + adat[:,n], kdat[:,n] + 0.5*adat[:,n]] 
hflat = hdat[:,n].flatten() 

56 

58 

60 

62 

64 

66 

for i,d in enumerate(datal): 
dflat = d.flatten() 
tcorr[i,n] np.corrcoef(dflat,tflat)[O,l] 
hcorr[i,n] np.corrcoef(dflat,hflat)[O,l] 

tcor r [ndata, n] np.corrcoef(hflat,tflat)[O,l] 

#blank out no-flow area 
tcorr[np.isnan(kdat[O,:])[None,:]] 
hcorr[np.isnan(kdat[O,:])[None,:]] 

np.NaN 
np.NaN 

68 # clean up some temporary things 
del datal 

70 del hflat 
del dflat 

72 

74 

76 

78 

80 

82 

84 

86 

wipp = np.loadtxt(datadir+'wipp_boundary.dat') 
h2 = np.loadtxt(join(datadir, 'h2_2007ll.dat'),delimiter=', ') 
h3 = np.loadtxt(]oin(datadir, 'h3_2007ll.dat'),delimiter=', ') 
salado= np.loadtxt(join(datadir, 'mrgn_dissolution.dat'),skiprows=5) 
wells= np.loadtxt(datadir+'2007_well_data.dat') 
fiberg = wells[:,4] == 0.0 

#regional left,right,bottom,top 
regext = (xmin,xmax,ymin,ymax) 

# wipp area left,right,bottom,top 
wippext = (wipp[:,Oj.min() - 1500.0, wipp[:,O].max() + 1500.0, 

wipp[:,l].min() - 1500.0, wipp[:,l].max() + 1500.0) 

cmap = colors.Linearsegmentedcolormap.from_list('bwr',('blue','white', 'red')) 
88 norml = colors.Normalize(vmin=-l,vmax=+l) 

norm2 = colors.Normalize(vmin=-0.5,vmax=+0.5) 
90 normsml = colors.Normalize(vmin=-0.015,vmax=+0.015) 

normsm2 = colors.Normalize(vmin=-0.005,vmax=+0.005) 
92 

94 

96 

98 

100 

102 

104 

106 

108 

110 

112 

plt.figure(l) 
plt.semilog~(lO.O**trav, 'k*') 
pl t. xl abel ( realization') 
plt.ylabel('~ears travel time to WIPP LWB') 
plt.savefig( travel_times.png') 
plt. cl ose(l) 

fmt = '%. 5e' 
fn = ['_kx_', '_ky_', '_keff_'] 
nn = ['K_x', 'K_y', 'K_{eff}'] 

#plot comparisons of partial and regular Keff correlation inside WIPP 
plt.figure(l,figsize=figsize,dpi=dpi) 
pl t. subpl ot(l21) 
plt.imshow(tcorr[2,:].reshape((ny,nx)),interpolation='nearest', 

cmap=cmap,norm=norm2,extent=regext) 
plt.colorbar(shrink=0.8) 
finish_fig(wippext) 
plt.title('corr. $K_{eff}$ w/ travel time') 
plt.subplot(l22) 
plt.imshow(pck.reshape((ny,nx)),interpolation='nearest', 
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160 

162 

164 

166 

168 

170 

172 

174 

176 

178 

180 

182 

184 

186 

188 

190 

AP-111 Rev. 1 Monitoring Network Design Optimization 

cmap=cmap,norm=normsm2,extent=regext) 
plt.colorbar(shrink=0.8) 
finish_fig(wippext) 
plt.title('partial corr. $K_{eff}$ w/ travel time') 
plt.savefig('Keff_partial_travel_time_corr.png') 
plt.close(l) 

#plot comparisons of partial and regular head correlation inside WIPP 
plt.figure(l,figsize=figsize,dpi=dpi) 
plt.subplot(l21) 
plt.imshow(tcorr[ndata, :].reshape((ny,nx)),interpolation='nearest', 

cmap=cmap,norm=norm2,extent=regext) 
plt.colorbar(shrink=0.8) 
finish_fig(wippext) 
plt.title('corr. $h$ w/ travel time') 
plt.subplot(122) 
plt.imshow(pch.reshape((ny,nx)),interpolation='nearest', 

cmap=cmap,norm=normsml,extent=regext) 
plt.colorbar(shrink=0.8) 
finish_fig(wippext) 
plt.title('partial corr. $h$ w/ travel time') 
plt.savefig('h_partial_travel_time_corr.png') 
plt.close(l) 

# write results (reshaped into matrix form) 
for j,f in enumerate(fn): 

np.savetxt('corr'+f+'vs_time.dat', tcorr[j,:].reshape((ny,nx)),fmt=fmt) 

plt.figure(l,figsize=figsize,dpi=dpi) 
plt. subplot(l21) 
plt.imshow(tcorr[j,:].reshape((ny,nx)),interpolation='nearest', 

cmap=cmap,norm=norm2,extent=regext) 
finish_fig(regext) 
plt.title('regional corr. $' + nn[j] + '$ w/ travel time') 
plt.subplot(122) 
plt.imshow(tcorr[j,:].reshape((ny,nx)),interpolation='nearest', 

cmap=cmap,norm=norm2,extent=regext) 
plt.colorbar(shrink=0.8) 
finish_fig(wippext) 
plt.title('WIPP corr. $' + nn[j] + '$ w/ travel time') 
plt.savefig(f[l:] + 'travel_time_corr.png') 
plt.close(l) 

np. savetxt(' corr '+f+ 'vs_head. dat', hcorr [j,:]. reshape((ny, nx)), fmt=fmt) 

plt.figure(2,figsize=figsize,dpi=dpi) 
plt.subplot(121) 
plt.imshow(hcorr[j,:].reshape((ny,nx)),interpolation='nearest', 

cmap=cmap,norm=norml,extent=regext) 
finish_fig(regext) 
plt.title('regional corr. $' + nn[j] + '$ w/ head') 
plt.subplot(122) 
plt.imshow(hcorr[j,:].reshape((ny,nx)),interpolation='nearest', 

cmap=cmap,norm=norml,extent=regext) 
plt.colorbar(shrink=0.8) 
finish_fig(wippext) 
plt.title('WIPP corr. $' + nn[j] + '$ w/ head') 
plt.savefig(f[l:] + 'heads_corr.png') 
plt.close(2) 

np.savetxt('corr_head_vs_time.dat', tcorr[ndata,:].reshape((ny,nx)),fmt=fmt) 

plt.figure(4,figsize=figsize,dpi=dpi) 
plt.subplot(l21) 
plt.imshow(tcorr[ndata,:].reshape((ny,nx)),interpolation='nearest', 

cmap=cmap,norm=norm2,extent=regext) 
finish_fig(regext) 
plt.title('regional corr. head w/ time') 
plt.subplot(122) 
plt.imshow(tcorr[ndata,:].reshape((ny,nx)),interpolation='nearest', 

cmap=cmap,norm=norm2,extent=regext) 
plt.colorbar(shrink=0.8) 
finish_fig(wippext) 
plt.title('WIPP corr. head w/ time') 
plt.savefig('heads_vs_travel_time_corr.png') 
plt.close(4) 

#compute variance across all realizations for output and each parameter 
192 print 'travel time to WIPP LWB:\tmean:%.8e\tstd:%.8e\n' % \ 

(trav.sum()/lOO.O,np.sqrt(np.var(trav))) 
194 
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data= [kdat, kdat+adat, kdat+O.S*adat] 
196 dnam = ['kx_', 'ky_', 'keff_'] 

dnnm = ['$\\log_{10}(K_x', '$\\log_{10}(K_y', '$\\log_{10}(K_{eff}'] 
198 

200 

202 

204 

206 

208 

210 

212 

214 

216 

2 

4 

6 

8 

10 

for j,(dat,nam) in enumerate(zip(data,dnam)): 
std = np.sqrt(np.var(dat,axis=O).reshape((ny,nx))) 
std[std < 1.0E-10] = 0.0 
mean = (dat.sum(axis=0)/100.0).reshape((ny,nx)) 
np.savetxt(nam+'var.out',std,fmt=fmt) 
np.savetxt(nam+'mean.out',mean,fmt=fmt) 
plt.figure(3,figsize=figsize,dpi=dpi) 
plt.subplot(121) 
plt.imshow(mean,interpolation='nearest',extent=regext) 
plt.colorbar(shrink=0.8) 
finish_fig(regext) 
plt.title('mean ' + dnnm[j] + ')$') 
plt.subplot(122) 
plt.imshow(std,interpolation='nearest',extent=regext, norm=colors.Normalize(vmin=O.O)) 
plt.colorbar(shrink=0.8) 
finish_fig(regext) 
plt.title('$\\log_{10}$ standard deviation ' + dnnm[j] + ')$') 
plt.savefig(nam + 'avg_std.png') 
plt.close(3) 

B. 5. Combination of Three Methods Scripts 

8.5.1. Python script combine _plot _methods .py 
The following Python script combines the results of the three individual methods, plots the 
figures in the text, and samples the results at steel-cased well locations to create the table in the 
text. 

import numpy as np 
import matplotlib 
matplotlib.use('Agg') 
import matplotlib.pyplot as plt 
import matplotlib.colors as colors 
from os.path import join 
from itertools import chain 

# weights used for recombination 
w = (0.5,1.0,1.0) 

12 def normalize_field(f): 
'"'"pass a field with NaN in places outside active modflow region""" 

14 fmin = np.nanmin(f) 
fmax = np.nanmax(f) 

16 return (f-fmin)/(fmax-fmin) 

18 def normalize_triangle(f): 
fmin = np.nanmin(f) 

20 fmax = np.nanmax(f) 
return f/(fmax-fmin) 

22 

24 

26 

def sr,read_field(fsm,factor=2): 
" "'map a field that is a subset of the 307x284 field onto the large field""" 
flar~e = np.empty((fsm.shape[O]*factor,fsm.shape[1]*factor),dtype=fsm.dtype) 
for J,row in enumerate(fsm): 

28 

30 

32 

34 

36 

38 

40 

42 

44 

drow = list(chain(*[(x,x) for x in row])) 
flarge[2*j,:] = drow 
flarge[2*i+1,:] = drow 

return fl arge [0: -1, :] 

def finish_fig(extents): 
'''Add common things to figures''' 
plt.hold = True 
plt.xlabel('UTM NAD27 X [km]') 
plt.axis(extents) 
locs,labels = plt.xticks() 
plt.xticks(locs,(locs/1000.0).astype(' IS3')) 
plt.ylabel('UTM NAD27 Y [km]') 
locs,labels = plt.yticks() 
plt.yticks~locs,(loc~/1000.0);as1YP~(' l~4'),rotation=90) 
plt.plot(wlpp[:,O],wlpp[: 1 1],,k-.,ll~ewldth=1) plt.plot(h2[:,0],h2[:,1], g-- ,llnewldth=2) 
plt.plot(h3[:,0],h3[:,1], 'r:',linewidth=2) 
plt.plot(salado[:,O],salado[:,1],'b:',linewidth=2) 
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46 plt.plot(wells[fiberg,O],wells[fiberg,1], ·~s',markersize=4) 
plt.plot(wells[steel,O],wells[steel,1], 'ro ,markersize=4) 

a plt.axis('image') 
plt.axis(extents) 

50 
datadir = join(' .. ','common_data') 

52 
fh = open(join(datadir, 'model_domain_specs.dat'),'r') 

~ nx,ny = [int(x) for x in fh.readline().strip().split()] 
xmin,ymin = [float(x) for x in fh.readline().strip().split()] 

56 xmax,ymax = [float(x) for x in fh.readline().strip().split()] 
fh.close() 

58 

60 

62 

64 

wipp = np.loadtxt(join(datadir, 'wipp_boundary.dat')) 
h2 = np.loadtxt(joln(datadir, 'h2_200711.dat'),delimiter=', ') 
h3 = np.loadtxt(join(datadir, 'h3_200711.dat'),delimiter=', ') 
salado= np.loadtxt(join(datadir, 'mrgn_dissolution.dat'),skiprows=5) 
wells= np.loadtxt(join(datadir, '2007_well_data.dat')) 

66 

68 

fhwn = open(ioin(datadir,'2007_well_data_with_names.dat'),'r') 
# names are last column of each row, but not including 2 wells in CH region 
steel_well_names = [x.rstrip().split()[-1] for x in fhwn if x.split()[-2] == '1'] 
fhwn. close() 

70 

72 

74 

76 

78 

80 

82 

84 

fiberg = wells[:,4] == 0.0 
steel= wells[:,4] == 1.0 

wellij = n~.zeros((steel.sum(),2),'int') 
wellij[:,O = np.floor((wells[steel,O] - xmin)/100.0) 
welliJ[:,1 = np.floor((ymin- wells[steel,1])/100.0) 

#regional left,right,bottom,top 
regext = (xmin,xmax,ymin,ymax) 

# wipp area left, right, bottom, top 
wippext = (wipp[:,Oj.min()- 1500.0, wipp[:,O].max() + 1500.0, 

wipp[:,1].min()- 1500.0, wipp[:,1].max() + 1500.0) 

fs = (18,9) 

86 

88 

# read in mean/medain kriging + 1 results 
# these are on a mesh with 1/4 as many elements (1/2 as many in each direction) 
#and therefore must be mapped onto the MODFLOW grid 

90 kmean = np.loadtxt(join(' .. ', 'krigin~_add_well', 'addone_mod_results_mean.dat')) 
kmedian = np.loadtxt(join(' .. ','kriglng_add_well', 'addone_mod_results_median.dat')) 

92 
kmean[kmean==1] = np.NaN #blank out areas outside MODFLOW active areas 

94 kmedian[kmedian==1] = np.NaN 

96 nkmean = normalize_field(kmean) 
nkmedian = normalize_field(kmedian) 

98 
kmean = spread_field(kmean)[::-1,:] 

100 kmedian = spread_field(kmedian)[::-1,:] 

102 nkmean = spread_field(nkmean) [: :-1, :] #flip wrt y 
nkmedian = spread_field(nkmedian)[::-1,:] 

104 
#read in the results of the add-one analysis for triangles 

106 tmean = np.loadtxt(join(' .. ', 'triangle_add_well', 'triangles_add_one_mean.dat')) 
tmedian = np.loadtxt(join(' .. ', 'triangle_add_well', 'triangles_add_one_median.dat')) 

108 
tmean[tmean==-999] = np.NaN #blank out areas outside MODFLOW active areas 

110 tmedian[tmedian==-999] = np.NaN 

112 ntmean = normal i ze_tri angl e(tmean) [: :-1, :] 
ntmedian = normalize_triangle(tmedian)[::-1,:] 

114 
# read in correlation results (handling the NaN in the file) 

116 fhk = open(join(' .. ', 'model_correlation', 'CRA2009_model', 

118 kl = [] 
'final_100_fields', 'corr_keff_vs_time.dat'), 'r') 

for line in fhk: 
120 kl.append([float(x) for x in 

line.strip().replace('1.#QNANe+00', '-999').split()]) 
1n fhk.close() 

kcorr = np.array(kl) 
124 del kl 

126 fhh = open(join(' .. ', 'model_correlation', 'CRA2009_model ', 
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hl = [] 
for line in fhh: 

'final_100_fields','corr_head_vs_time.dat'), 'r') 

hl.append([float(x) for x in 

128 

130 

132 
line.strip().replace('1.#QNANe+00','-999').replace('-1.#IND0e+00','1.0E-

16') .split()]) 
fhh.close() 

134 

136 

138 

140 

142 

144 

hcorr = np.array(hl) 
del hl 

# set -999 substituted above back to NaN 
kcorr[kcorr==-999]=n~.NaN 
kcorr[np.isnan(tmeanL::-1,:])]=np.NaN 
hcorr[hcorr==-999]=n~.NaN 
hcorr[np.isnan(tmeanL::-1,:])]=np.NaN 

nkcorr = normalize_field(np.abs(kcorr)) #should already be rlipped 
nhcorr = normalize_field(np.abs(hcorr)) 

146 # ##################### 
#compute the remove-one analysis ror correlation results rrom sampling-based correlation 

148 analysis 
fh = open('corr_remove_one_steel.dat', 'w') 

150 

152 

154 

fh.write('\t'.join(steel_well_names) + '\n') 
np.savetxt(fh,kcorr[wellij[:,1],wellij[:,O]][None,:],fmt='%.6e',delimiter='\t') 
np.savetxt(fh,hcorr[welliJ[:,1],welliJ[:,O]][None,:],fmt='%.6e',delimiter='\t') 
fh.close() 

156 

158 

160 

162 

164 

166 

168 

170 

#plot up histograms or distribution in each rteld 
plt.figure(1,figsize=(l2.5,10)) 
bins = 150 

plt.subplot(321) 
plt.hist(nkmean[~np.isnan(nkmean)].flatten(),bins=bins) 
plt.ylabel('frequency') 
plt.xlabel(r'scaled mean $\Delta$ kriging var.') 
plt.axis('tight') 

plt.subplot(322) 
plt.hist(nkmedian[~np.isnan(nkmedian)].flatten(),bins=bins) 
plt.xlabel(r'scaled median $\Delta$ kriging var.') 
plt.axis('tight') 

plt.subplot(323) 
172 plt.hist(ntmean[~np.isnan(ntmean)].flatten(),bins=bins) 

plt.ylabel('frequency') 
174 plt.xlabel(r'scaled mean $\Delta$ triangle angle raio') 

plt.axis('tight') 
176 

plt.subplot(324) 
178 plt.hist(ntmedian[~np.isnan(ntmedian)].flatten(),bins=bins) 

plt.xlabel(r'scaled median $\Delta$ triangle angle raio') 
100 plt.axis('tight') 

1~ plt.subplot(325) 
plt.hist(nkcorr[~np.isnan(nkcorr)].flatten(),bins=bins) 

184 plt.ylabel('frequency') 
plt.xlabel(r'scaled $\rho$ $K_{eff}$ vs. $t$') 

100 plt.axis('tight') 

100 plt.subplot(326) 
plt.hist(nhcorr[~np.isnan(nhcorr)].flatten(),bins=bins) 

100 plt.xlabel(r'scaled $\rho$ head vs. $t$') 
plt.axis('tight') 

192 
plt.subplots_adjust(hspace=0.3) 

194 plt.savefig('histograms_of_distributions.png') 
pl t. cl ose(1) 

196 

198 

200 

202 

204 

206 

#plot up histograms or original (unsealed) distribution in each rteld 
plt.figure(1,figsize=(12.5,10)) 
bins = 150 

plt.subplot(321) 
plt.hist(kmean[~np.isnan(kmean)].flatten(),bins=bins) 
plt.axis('tight') 
plt.ylabel('frequency') 
plt.xlabel(r'unscaled mean $\Delta$ kriging var.') 

plt.subplot(322) 
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plt.hist(kmedian[-np.isnan(kmedian)].flatten(),bins=bins) 
plt.axis('ti~ht') 
plt.xlabel(r unsealed median $\Delta$ kriging var.') 

plt.subplot(323) 
plt.hist(tmean[-np.isnan(tmean)].flatten(),bins=bins) 
plt.axis('tight') 
plt.ylabel('frequency') 
plt.xlabel(r'unscaled mean $\Delta$ triangle angle raio') 

plt.subplot(324) 
plt.hist(tmedian[-np.isnan(tmedian)].flatten(),bins=bins) 
plt.axis('ti~ht') 
plt.xlabel(r unsealed median $\Delta$ triangle angle raio') 

pl t. subpl ot(325) 
plt.hist(kcorr[-np.isnan(kcorr)].flatten(),bins=bins) 
plt.axis('tight') 
plt.ylabel('frequency') 
plt.xlabel(r'unscaled $\rho$ $K_{eff}$ vs. $t$') 

plt.subplot(326) 
plt.hist(hcorr[-np.isnan(hcorr)].flatten(),bins=bins) 
plt.axis('ti~ht') 
plt.xlabel(r unsealed $\rho$ head vs. $t$') 

plt.subplots_adjust(hspace=0.3) 
plt.savefig('histograms_of_original_distributions.png') 
plt.close(l) 

cmap = colors.Linearsegmentedcolormap.from_list('rwg',('red', 'orange', 'white', 'blue', 'purple')) 
nrm = colors.Normalize{vmin=-2.4,vmax=2.4) 
#cmap = 'jet' 
out= np.zeros((307,284,4)) 

## combine results linearly with multipliers 
#mean and median + kerr and head= 4 results 
plt. figure(!) 
#out[:,:,O] = np.sqrt((w[O]*nkcorr)**2 + (w[1}*nkmean)**2 + (w[2]*ntmean)**2) 
out[:,:,O] = w[O]*nkcorr + w[l]*nkmean + w[2]*ntmean 
plt.imshow(out[:,:,O],interpolation='nearest',extent=regext,cmap=cmap,norm=nrm) 
cb = plt.colorbar(shrink=0.8) 
cb.set_label('$S_c$') 
plt.title('$K_{eff} +$mean') 
finish_fi~(regext) 
plt.saveflg('combined_results_map_Keff_mean.png') 
plt.close(l) 

plt.figure(l) 
#out[:,:,l] = np.sqrt((w[O]*nhcorr)**2 + (w[1]*nkmean)**2 + (w[2}*ntmean)**2) 
out[:,:,l] = w[O]*nhcorr + w[l]*nkmean + w[2]*ntmean 
plt.imshow(out[:,:,l],interpolation='nearest' ,extent=regext,cmap=cmap,norm=nrm) 
cb = plt.colorbar(shrink=0.8) 
cb.set_label('$S_c$') 
plt.title('$h +$mean' ) 
finish_fi~(regext) 
plt.saveflg('combined_results_map_h_mean.png') 
plt.close(l) 

plt.figure(l) 
#out[:,:,2] = np.sqrt((w[O]*nkcorr)**2 + (w[1]*nkmedian)**2 + (w[2]*ntmedian)**2) 
out[:,:,2] = w[O]*nkcorr + w[l]*nkmedian + w[2]*ntmedian 
plt.imshow(out[:,:,2],interpolation='nearest',extent=regext,cmap=cmap,norm=nrm) 
cb = plt.colorbar(shrink=0.8) 
cb.set_label('$s_c$') 
plt.title('$K_{eff} +$median' ) 
finish_fi~(regext) 
plt.saveflg('combined_results_map_Keff_median.png') 
plt.close(l) 

plt.figure(l) 
#out[:,:,3] = np.sqrt((w[O]*nhcorr)**2 + (w[l}*nkmedian)**2 + (w[2]*ntmedian)**2) 
out[:,:,3] = w[O]*nhcorr + w[l]*nkmedian + w[2]*ntmedian 
plt.imshow(out[:,:,3],interpolation='nearest',extent=regext,cmap=cmap,norm=nrm) 
cb = plt.colorbar(shrink=0.8) 
cb.set_label('$S_c$') 
plt.title('$h +$median' ) 
finish_fi~(regext) 
plt.saveflg('combined_results_map_h_median.png') 
plt.close() 

Page 126 of 133 



 

 Information Only 

-----------~----~ 

AP-111 Rev. 1 Monitoring Network Design Optimization 

# ######################################## 
290 #save table of results at steel-cased wells 

fh = open('composite_remove_one_steel.dat','w') 
292 

294 

296 

fh.w~i~e('\t'.join(steel_well_names) + '\n') 
for J 1n [0,1,2,3]: 

np.savetxt(fh,out[wellij[:,l],wellij[:,O],j][None,:],fmt='%.6e',delimiter='\t') 
fh.close() 
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9.0 Remove One Steel Well Figures 

The following set of 18 figures (1 colormap and 17 map plots) shows the computed impact on 
the estimated local gradient from removal of a single steel-cased well from the Culebra 
monitoring network. Two different types of changes are being illustrated; changes in both 
gradient and magnitude are represented by the hue and saturation of the color, respectively. 
White areas in the figures correspond to areas where the change in the predicted gradient is less 
than the threshold value (0.01), while the deeply colored areas indicate a large change in the 
magnitude of the gradient. Hot (red) colors indicate the magnitude of the change in angle, with 
cool colors (blue) indicating no change in direction (both factors are illustrated in the 2D color 
map below). 

For example, if removing a well causes the gradient to change in magnitude only by the 
maximum amount, the region would be filled with dark blue. Likewise, if the gradient direction 
change completely (180 degrees) upon removing the well, but the gradient magnitude only 
changed slightly, the region would be filled with a faint red or pink color. Magenta indicates a 
change of90 degrees, halfway between red and blue. 
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Each figure shows the localized effects on the gradient magnitude estimate, due to removing a 
steel-cased well from the network. The colors (representing changes above the threshold) are 
only found in the triangles directly connected to the removed point. 

For wells that have no effect outside the WIPP L WB, the plot area is reduced to this smaller area. 
The Delaunay triangles corresponding to the reduced monitoring network are plotted on the 
figure; the original triangles are not shown. 
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